Contour Integrals
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Cauchy’s Theorem: Let C' be a simple (simple curve is one which does
not cross itself) closed curve with a continuously turning tangent except
possibly at a finite number of points (we allow a finite number of corners
otherwise we have a smooth curve). If f(z) is analytic on and inside C', then
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Green’s theorem in the plane
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These two line integrals are zero.
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Applying Green’s theorem in the plane.
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Using Cauchy-Riemann conditions on the derivatives of the integrand.



Cauchy’s integral formula: If f(2) is analytic on and inside a simple
closed C', the value of f(z) at a point z = «a inside C is is given by the
following contour integral along C"
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Along the circle C, 2 = a + pe'?
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Hints for solving line integrals in complex plane

For solving line integrals in complex plane:
1. Apply line integration methods learned in multi-variable calculus.
2. Check your result by using the Cauchy’s theorem.
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(a) along the line y = x;
(b) along the indicated broken line.
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|, zdz along the indicated paths:




