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1-D DIRAC DELTA FUNCTION
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1-D Dirac Delta Function
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Technically, 8 (x) 1s not a function at all, since its value 1s not finite at x = 0; in the
mathematical literature it is known as a generalized function, or distribution. It
is, if you like, the limit of a sequence of functions, such as rectangles R,(x). of
height n and width 1/n. or isosceles triangles T, (x), of height n and base 2/n



3-1) Dirac Delta Functon
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Codlonl s Law

permittivity of free space
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Codlonl s Law
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where the constant j, =4z x107 N-s*-C? is called the permeability of free space, and
c=299792458 m-s™ is the speed of light. Therefore
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Prineile of Saperposition

Coulomb’s law applies to any pair of point charges. When more than two charges are
present, the net force on any one charge is simply the vector sum of the forces exerted on
it by the other charges. For example, if three charges are present, the resultant force

experienced by ¢, due to ¢, and ¢, will be
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F,=F;+F,;.




Assume q; = q3 = +Q and g = —Q, where @ > 0.

Calculate, f’g, the force exerted by objects 1 and 3 on object 2.



Denection of the Jotal Force
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Which of the arrows below best represents the approximate direction

of the total force on the charge at point C?

(7) None of these.



Denection of the [etal Fonce
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Tthe Elecetnic Ficld
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Flux Unit vectors of area elements



Gauss s Law
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[E -da = — Z qgi = — f pdv (Gauss’s law)
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The flux of the electric field E through any closed surface, that is,
the integral [ E - da over the surface, equals 1/¢q times the total
charge enclosed by the surface:



Gauss ¢ law in differnential form
* By applying divergence theorem

%E-da:/(V-E)dr
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And since this holds for any volume, the integrands must be equal:

So Gauss’s law becomes
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Tte Divergence of E
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Field cnside and outoide a uniform sphene
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The flux through the cylindrical

surface 1s simply the area, 2w rL, times E,., the field at the surface. On the

other hand, the charge enclosed by the surface is just AL, so Gauss’s law
gives us (2nrL)E, = AL/€p or




outward flux 1s found only at the ends, so that if £p denotes the magni-
tude of the field at P, and Ep the magnitude at P’, the outward flux is

AEp + AEp = 2AEp. The charge enclosed i1s 0 A, so Gauss’s law gives
2AEp = 0A/€q, or

E—J
P_ZE[]

Symmetry is crucial to this application of Gauss’s law.

e el e e

L. Spherical symmetry. Make your Gaussian surface a concentric sphere
2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder
3. Plane symmetry. Use a Gaussian “pillbox™ that stradd]es the surface




ax cn a Cube (Problem)
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Consider a cube with each side of length g. A point-like object with charge @) is placed at one corner of the cube which is
shared by three faces, as show in the sketch. What is the flux of the electric field emerging from each of the other three
square faces of the cube, that is, the three faces which do not have the charge at one of their corners (one of these faces is
show in blue at the top of the image above)?



ax cn a Cube (Solution)

Consider a cube of side 2a. This cube can be constructed from eight cubes each of side a.

Place a point-like object with charge @ at the center of this larger cube. The total flux through the larger cube, by Gauss's law,
is just Qfsn. Since each face of the larger cube is identical (i.e. the same distance away from the point charge and with the
same orientation), the flux through each of those six larger faces is 1/6 of the total flux or @ / 6£g. We can divide each larger
face into four equal square faces of side a which again have identical distances from the charge and orientations. Therefore,
the flux through each of these smaller square faces is Q;’Z‘ie:u. The flux though one of these smaller square faces is the
same as the flux through each face of a cube of side a with the charged object placed at the corner, the quantity we would

like to determine. So the answer is

Q

@E=Eﬂ.




Sthere with Non-Vncforn charge distribiction

A non-conducting sphere of radius bis constructed of two materials. The inner portion, radius a, has a non-uniform volume
charge density given by:

p1(r) :% for r<a

where e > ( is a constant. The outer portion, with inner radius @ and outer radius b has a uniform charge density p3.

(Part a) Calculate g;,, the total charge in the inner region of radius a.

(Part b) If the electric field outside the sphere is everywhere zero, E=0forr > b,
what is the uniform charge density pa of the outer portion of the sphere?
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Sthere with Non-Vantforn charge distribection

(Part c) Calculate the magnitude of the radial component of the electric field at

any point inside the inner region of the sphere (r < a).

Due to the spherical symmetry E= E.(r)f
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Sthere with Non-Vncforn charge distribiction

(Part d) Calculate E,., the magnitude of the radial component of the electric field at

any point in the outer region of the sphere,a < r < b.

Genc = Gin + padmrdr

2
= 2ama’® — saa” _dn (3 —a®)

2(0° — a®) 3

r —ad
== 2(171'132 (1 — m)

the electric flux through the Gaussian sphere of radius r is E, - 4mr?, therefore Gauss's law becomes:

2 3_ 3 . 2 3 3
Er_4ﬂ2=2ﬂf“ﬂr (l—u) » E=_— (l—u)i‘;a{r-{b.

€0 b3 — a? b —a?

At r = b the electric field is zero as expected.

Lo .= a
Atr = a the electric fieldis & = —7F
2¢



Yon- Conducting Solid Sphere (Part al
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A non conductive sphere of radius a, has a uniform charge distribution p. The center of the sphere is at the origin of the
coordinate system.

Calculate the electric field at a point P inside the sphere, where the position of point Pis given as ¥ = rf.



ow - Conducting Solid Sptere (Part a)

Consider the point P inside the sphere, a distance r from the origin. We choose a sphere of radius 7 as our Gaussian
surface with r < a.

The electric field at any point inside the sphere is radially outwards and given byf] = E;(r)f, where E (r) is the radial
component of the electric field and is only a function of r. The electric flux through this closed surface is

$E.dA = B, - 47
Because the charge distribution is uniform, the charge enclosed by the Gaussian surface is

Qenc P (47 /3)
o B £n

Recall that Gauss' Law equates electric flux to charge enclosed:



Vow- Conducting Solid Sphene

Q enc

B dA = =

So we substitute the two calculations above into Gauss' law to arrive at:

3
p\4drr /3
Ey - 4mr? = ( / )
€0
We can solve this equation for the electric field
—h - p‘T‘ -
E(P)=FEr=—rt
( ] ! 3En
This answer can also be written as E (P) = P ri=P3
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Non- Conducting Solid Sphene (Part ¢)

+Z

(Part b) We translate the sphere along the y-axis so that its center is at point Feepter = b}. where b > a. The position of
point P inside the sphere, measured with respect to the center of the sphere is ¥4, and the position of point P measured
from the coordinate system with origin at point O is ¥ = 7.

Write the expression of the electric field at point P inside the sphere, with respect to the coordinate system of origin in O.



Non- Conducting Solid Sphene (Part ¢)

s
1

(Part b) The electric field at point P has the same magnitude as the one calculated in part (a) and it points radially outwards

from the center of the sphere. In terms of the coordinate system with origin at the center of the sphere, the electric field at
point P is given by:

— p —
B=L7,
3507' (1)

Looking at the figure, vector 7 is the sum of vectors 7, and 7 center -

Replacing (eq. 2) in (eq. 1) we obtain:

B= iﬂ{rf'—bj) 3)



Vlon- (onducting Selid Sphere (Pant-c)
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(Part c) Consider now a sphere of radius R made of a non-conducting material that has a uniform volume charge density p.
The center of the sphere is at the origin of the coordinate system. A spherical cavity of radius a (with @ < R)is then carved

out from the sphere. As shown in the figure above, the center of the cavity is on the y-axis a distance b from the origin. Find
the direction and magnitude of the electric field at any point within the cavity.



o Qonducting Solid Sphere(Part-c)

At first glance this charge distribution does not seem to have any of the symmetries that enable us to use Gauss's law.
However we can consider this charge distribution as the sum of two uniform spherical distributions of charge. The firstis a
sphere of radius R centered at the origin with a uniform volume charge density p. The second is a sphere of radius a
centered at the point along the y-axis a distance b from the origin (the center of the spherical cavity) with a uniform volume
charge density —p.

+X (out) X (out)

When we add together these two distributions of charge we obtain the desired uniform charged sphere with a spherical
cavity of radius a. We can then add together the electric fields from these two distributions at any point in the cavity to obtain
the electric field of the original distribution at that point inside the cavity (superposition principle). Each of these two
distributions are spherically symmetric and therefore we can use Gauss’s Law to find the electric field associated with each of
them.



o Qonducting Solid Sphere(Part-c)

Electric field inside the sphere of radius a:

In part (b), we calculated the electric field of a uniform charged sphere of radius a with center at point 7 center . The sphere in
part (b) was positively charged therefore we have to change p to —pin (eq. 3). We call this electric field E_

= P %
E_=—(rt—b 4
3Eﬂ( J) (4)
Electric field inside the sphere of radius R:
This electric field was found in part (a):
=, pre . P . (5)
E, (P)= r = rr
+ ( } 3E{] 3&';_]

Now we use superposition principle with the expressions in (eq. 5) and (eq. 4) for ﬁhr and E_ to obtain the electric field for
the charge distribution of a sphere with a cavity:

E(P) = E, (P)+E_ (P)

P . P oo 3
— —7rt— —(rt — b

3eq rf 30, (rit — bj)
_ ibj
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Tte fornce on a layer of change
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Newton’s third law; the patch as a whole cannot push on itself. That
simplifies our problem, for it allows us to use the entire electric field E,
including the field due to all charges in the patch, in calculating the force
dF on the patch of charge dg:



Tte fonce on a layer of charnge

E =0/€)

E=0 PAr=o

But what E shall we use, the field £ = o/€; outside the sphere or the
field £ = 0O inside? The correct answer, as we shall prove in a moment,
1s the average of the two fields that 1s,

dF = %(a/e{} +0)oda =" H

2€p



Tte fonce on a layer of charnge

Now let us look carefully within the layer where the field 1s changing

continuously from E| to E> and there 1s a volume charge density p (x)
extending from x = 0 to x = xp, the thickness of the layer Y

s
- = ®e

Consider a much thinner slab, of thickness dx < xp, which contains per
unit area an amount of charge p dx. If the area of this thin slab is A, the

f It 1
orce on it 1s UF = Epdr-A -
Thus the total force per unit area of our original charge layer is « ::'E:;

F dF 0 F Er €0

— = — = Ep dx ‘ — = - — 2 _ 2
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Electrostatic Pressure



Electric Potential

|
C{j .
dreg r-

For a point charge = E =

E-dl=—Ldr

degr

/ L dl = f 4
a 4 e dreg r




Electric Potential

The integral around a closed path 1s evidently zero (for then r, = r})

%E-dl:(}

applying Stokes’ theorem, ‘ VXE=0

1 2 1 2
VXE = 4W€UV><]F,O(ZT = 4?T€Df{v><(¢2)] pdr

_ 2
=0 vx(72) =0
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Electric Potential

V(r)z—f E-dl
¢

9

b a
V(b)—V(a):—f E-dl—|—f E-dl

@ @

b @ b
:—f E-dl—f E-dl:—f E - dl
@) a a

b b b
V(b)—V(a):/ (VV).dl ﬂ/(VV)-dl:—/ E-dl

E=-VV.




Outside the sphere (rr > R) 1 E = Lt

4?1'(:'[: T

V(r)=—[_ E-«dl

Inside the sphere (r < R) : E= 41715[, 51T
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Pocsson s Equation and Laplace s Equation

E—=_VV
V.E=" ad VxE=0
€0
V.-E=V.(-VV)=—-V?V

V2V = —Eﬁ mm) Poisson’s Equation
0

In regions where there is no charge, p =0

Poisson’s equation reduces to Laplace’s equation

V'V =0. — Laplace’s Equation



Pocsson s Equation

Vi) = f’o(r;)dr’
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Single formula for E
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b
Vabnve: — Vbe]nw — _f E - dl
a

as the path length shrinks to zero

Vﬂb ove — Vbe]uw

gradient of V 1inherits the discontinuity in E; since E = —-VV
1 .
V Vabove = V Vielow = ——on
€0
d Vabm'e J Vbe]ew I A% o

‘ ‘ = ——0 where — =VV.n
on an €0 on




Werks and Enengy

b b
W:f F-dlz—Qf E-dl=Q[V(b)— V()] die_

: . : . . hd
bring ¢ in from far away and stick it at pointr , o die

W= Q[V(r) = V(o0)]

if you have set the reference point at infinity

W =0QV(r)



Tte Energy of a Pocut Charnge Distribution
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The fotal work necessary to assemble the first four charges
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The Enengy of a Pocut Charnge Distribution

Z qﬂ?}
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intentionally to count each pair twice

Finally, let’s pull out the tactor g;
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The Enengy of a (Continuons Charge
@'lﬂ .z a.

I
W= — Vd
2/p dt

p=¢V-E, so W:%D/(V-E)Vdr
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Capaciton

coulombs farads esu cm
™~ . -
_ . volts ; statvolts
ST units Q=Co CGS units 0=Co —
-::m
m?
EOA - = C= L=
C= 4J‘T'Eﬂﬂ C= 4};5- ~ o
\\ .

1 cm = 1.11 x 1012 farad
€p= 8.854 x 10-12 farad/meter
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(Capaciton

Since E is proportional to Q, so also is V. The constant of proportionality is
called the capacitance of the arrangement:

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and

separation of the two conductors. In ST units, C is measured in farads (F); a farad
is a coulomb-per-volt.

How much work does it take. to charge the capacitor up to a final amount Q7

12
w-@a= v=[ (Dt L vl
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Two phenical shells(capacitance & maximum charge) Part-a

Consider a spherical capacitor filled with air consisting of inner and outer thin conducting spherical shells with charge +Q on
the inner shell of radius @ = 0.10 m and charge — ) on the outer shell of radius b = 0.2 m. You may neglect the thickness
of each shell.

spherical shell
with charge — QO

spherical shell
with charge + Q0

(Part a) Find the magnitude of the electric field in each of the regions (i) r < a, (i)a < r < b, and (ii) » > b.



Two sphenical shello(capacitance & mavimam charge) Part-a

The shells have spherical symmetry so we need to use spherical Gaussian surfaces. Space is divided into three regions (1)
outside , (I} in between a < r < band (lll} inside 7 < a. In each region the electric field is purely radial (that is E = ET).

Region I: Outside » > b: Region Ill: Inside r < a:
These Gaussian surfaces contain a total charge of 0, so the electric fields in these regions must be 0 as well.

Region II: In between : Choose a Gaussian sphere of radius r. The electric flux on the surface is

E.dA = EA = 47’E = Qene

Gaussian sphere =)

-0
Dz
5%




Two sphenieal shelle(capacitance & mavimaum charge) Part-a

The enclosed charge is Qene = +@, and the electric field is everywhere perpendicular to the surface. Thus Gauss's Law
becomes

E-4m? = Q = F = Q
£0 dmeyr?

That is, the electric field outside the inner shell is exactly the same as if all the charge of the inner shell were at the center of
shell:

B 4ﬂ£r2f‘,furuc:r«::b
= 0

0, elsewhere



Two sptenical shells(capacitance & mavimam charge) Pant-4

(Part b) What is the electric potential difference V(a) — V(b)? Do you expect this potential difference to be positive or
negative? Be careful to enter the correct sign for your answer.

We expect that the positively charged inner shell is at a higher potential than the negatively charged outer shell. The potential

difference between the shells is
i - il Q Q @ Q 1 1
(@) (®) ,/;,' p Amwegr? " Amegr|,  Ameg (a b)

which is positive as we expect.



Two spthenical shells(capacitance & marimum charnge) Part-c

(Part c) What is the capacitance of this object?

We calculate the capacitance using the definition

C— Q _ Q _ 47eg _ dmegab
AV T @ (1 1)\ (1_1) b-a
dmeg \a b a b

Show that in the limit when the distance between the shells is very small b — a — 4, the capacitance approaches the result

for a parallel plate capacitor, where C' = g9 A /4.

If the distance between the shells is very small then the spherical capacitor begins to look very much like two parallel plates

separated by a distance § = b — a with area

B 2 2
Aﬁilﬂ'(ﬂ; ) ﬁal?r(a;a) = 4ma’® ~ 4mab

So, in this limit, the spherical formula is the same at the capacitance of a parallel plate capacitor, C = g9 A /4.

dmegab €0 (4‘?1"12) goA

C=limpya— > —F5— =~




Two sphenical shelle(capacitance & mavimaum charnge) Pant-d

(Part d i) What is the capacitance of this object in Farads?

(Part d ii) Suppose the maximum possible electric field at the outer surface of the inner shell before the air starts to ionize is
E(a) = 3.0 x 10°V - m~!. what is the maximum possible charge on the inner shell in Coulombs?

 4meggab (0.1m)(0.2m)

C = - —22x10°1F, 1/4meg =9 x 10° N -m? . C2.
b—a  (9x10°N-m?.C-2)(0.1m)

The electric field at the surface of the inner shell is given by

Q

dmega’

E(a)

Therefore the maximum charge on the inner shell is

(3.0 x 10°V - m™1)(0.1m)?

s =3.3x107%C
(9 x 10°N -m? - C-2)




Two spthenical shells(capacitance & marimum charnge) Part-e

(Part e i) What is the magnitude of the maximum potential difference, |V (a) — V(b)|, between the shells?

(Part e ii) What is the maximum amount of energy stored in this capacitor?

We can find the potential difference two different ways. Using the definition of capacitance we have that

Q _ dreyE(a)a® (b — a) _ E(a)a(b— a)

Via) = V(b) = C dregab b
~ (3.0x10°V -m~1)(0.1m)(0.1m)
V(a) = V(b) = 0.2m) =1.5x 10°V

The second method relies on our calculation of the potential difference in part b):

Q 1 1 I — QE’H‘.‘IE — (3'3 X 1{]_66]2 =925 lﬂ_lJ
AV = rala T T20 T @Eax100E)

Q Q

Recall that E(a) = or — E(a)a?. Substitute this into our expression for potential difference yielding
dmega?  4Ameg

1 1 sb—a b—a

V(a) — V(b) = E(a)a® (E - E) = E(a)a e E(a)a A




Two sptenical shells(capacitance & mavimam charge) Pant-|

(Part f) Now, with the charge still at its maximum possible value, consider the case that the dimension of the outer shell is
doubled from b to 2b. What is the change in the stored energy? Assume that the charge on the shells is not changed.

In terms of charge and capacitance, the change in the stored energy is given by

Q @

AU =U; —U; =

2(3}_2&
1@ (1 1)\ 1/@ (1 1
2\ 4w \a 2 2\ dmeg \a b
Q2
= 16megb

The maximum change in stored energy is when Q ez = 3.3 x 1078C. Therefore

Q?‘.'ma: . 1 (33 X 1{]_50)2 (9 % ]L[)QN .m2 . C‘—ZJ

— =1.23x10°'J
16meeb 4 (0.2m)

ﬁk‘I:Irrm:t: =

Since the oppositely charged spheres attract each other, it make sense that it takes positive energy to move the outer shell
farther away.
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: (c)
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The object in (a) is a neutral nonconductor. The charges in it, both
positive and negative, are immobile. In (b) the charges have been
released and begin to move. They will move until the final condition,
shown in (c), is attained.



E = 0 inside the material of a conductor;
o = 0 inside the material of a conductor;

At any point just outside the conductor, E 1s perpendicular to the sur-
face, and E = o /¢, where o 1s the local density of surface charge;

Because the surface of a conductor 1s necessarily a sur-
face of constant potential, the electric field, which 1s —grad ¢, must be

perpendicular to the surface at every point on the surface.






Laplace' s Equation (2-D)

I. The value of V at a point (x, y) is the average of those around the point.
More precisely, if you draw a circle of any radius R about the point (x, v),
the average value of V on the circle is equal to the value at the center:

|
V(x,y):—,} 2 Vdl.
LI

circle

2. V has no local maxima or minima: all extrema occur at the boundaries.

VA




Laplace s Equation (5-D)

1. The value of V at point r 1s the average value of V over a spherical surface
of radius R centered at r:

Vir) =

1
Vda.
4;:12235 .

sphere

2. As a consequence, V can have no local maxima or minima; the extreme

values of V must occur at the boundaries.



Boundary conditions and Uniguencss [heornems

First uniqueness theorem: The solution to Laplace’s equation in

some volume V i1s uniquely determined if V 1s specified on the
boundary surface S.

VVi=0 and V?V,=0
were two solutions to Laplace’s equation

/' V wanted in
this volume

B V specified V)
Vo=V, -V, on this
surface (S)
V2V3:V2V1—V2V2=U, \

obeys Laplace’s equation

and 1t takes the value zero on all boundaries
Laplace’s equation allows no local maxima or minima-
So the maximum and minimum of V5 are both zero.

Therefore V5 must be zero everywhere, and hence Vi = V2.



Conductorns (Second Unigueness Theornem)

Second uniqueness theorem: In a volume V surrounded by conduc-
tors and containing a specified charge density p, the electric field is
uniquely determined if the fofal charge on each conductor is given

] ] Integration surfaces
V'E]Z—p, VEEZ—;‘J
€0 €0
fwo fields satisfying the conditions of the problem 77 “Sse——e===
l I
E1~dﬂ=—Q;, Eg«dﬂz—Q;.
i th conducting i th conducting
surface surface 4T A o - T
] | Outer boundary-
could be at infinit
E1 -da = —th, \%’ Ezida:_Q[Dl' Y
€0 €0
auter outer

boundary boundary



Conductorns (Second Unigueness Theornem)

E; =E, — E,, which obeys V. E;=0
in the region between the conductors, and % E;-da=0

over each boundary surface.

each conductor is an equipotential, and hence V3 is a constant

V- (VsE3) = V3(V - E3) + E3 - (VV3) = —(E3)”.

fv - (ViE3)dt = 55 VsE; - da = —f(E3)2dr.
Vv S Vv

The surface integral covers all boundaries of the region in question—the con-

ductors and outer boundary. Now V3 is a constant over each surface (if the outer

boundary 1s infinity, V3 = 0 there), so it comes outside each integral, and what
remains 1is zero,



Conductorns (Second Unigueness Theornem)
/ (E;)*dt = 0.

Y
But this integrand is never negative; the only way the integral can vanish 1s if

E5 = 0 everywhere. Consequently, E; = E,



Tte method of Tmages

X

Suppose a point charge ¢ 1s held a distance d above an infinite grounded con-
ducting plane  Question: What is the potential in the region above the plane?



From a mathematical point of view, our problem is to solve Poisson’s equa-
tion in the region z > 0, with a single point charge ¢g at (0, 0, d), subject to the
boundary conditions:

I. V =0 when z = 0 (since the conducting plane is grounded), and

2. V — 0 far from the charge (that is, for x> + y? + 2 > dz).

V . 1 q ‘? 7A
("11_132): -
Ameo | x2+y2+(2—d)? X2+ Y2+ (2+d)?
"H?
. V=0whenz =0, d
2. V= 0forx? + y> 4+ 22 > d?
d




Tmage Charges

A point charge ¢ is situated a distance a from the center of a
grounded conducting sphere of radius R

Find the potential outside the sphere.

RE
b:—
e
. R
a 4 = ——4
i a

l !
dmeg \ 2 4
this potential vanishes at all points on the sphere, and therefore fits

the boundary conditions for our original problem, in the exterior region.



Dipoles

o q9 q
v = 4mep (’h ; »z_)

d d?
faizrz—}—(dﬁ)z:FrdmsS:rg | + —cosf + —
r 4r2
|1 d IR d
—2—(12F—c059) ’:“—(li—cosﬂ)
Ay T r r 2r
1 1 d
— — — = —cco0sf,
R S
| gdcos6




Using the law of cosines,

2 =r4+ (") =2rr' cosa = r? [l + (r_) -2 (r_) Cos O{|
r r

. l, r." rf
where « 1s the angle between r and r’. Thus 2 = r4/1 + €, = (—) (— — 2cos -:x) .

| 1 I 3, 5
= — l _].JIIIIE:— ]—_ - 2_ 3 & oE @
y — pute r( AN T

| r' r'\* (3cosla — 1
=— |14+ |—)(cosa)+ | —
r r r 2
"\ /5cos3 @ —3cosa
+ | — + ..
r 2




l = l F r f
V(r) = 4n50§r{"+'> f(r ) Py(cosa)p(r’)dr

1 | 1
o ! d ! _ ! S F i
e [r fp(r_) T +r2/r cosa p(r)dr
1 ) r
—f(f‘)( cos? a — ),o(r_)dr +]
+ - — +
- — I -
_|_

— +
Monopole Dipole Quadrupole Octopole
(V~1/r) (V~1/r?) (V~1/r) (V~1/r"

Vir) =




Legendne Polynomials

| (d\ :
P;(.I)Eﬁ(a) x2— 1. » Rodrigues formula

Po(x) = 1

Pi(x) = x

Py(x) = 3x*—1)/2

Py(x) = (5x° = 3x)/2

Py(x) = (35x* —30x%+3)/8
Ps(x) = (63x°> —70x> + 15x)/8




Legendne Polynomials (Orthogonality)

] T
[ Pi(x)Pp(x)dx :[ Pi(cosB) Py (cosB)sinb db
—1 0

0, if 1" £ 1,

T fr =1
n+1 !



Pn(x)

Legendne Polyncmials (Plot)
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legendre polynomials

Po(x)
Pi(x)
Pz(x)
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Pa(x)
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Tte monopole and dipole terms

Q
anﬂ(r) - 4 -
e 1
Viip(r) = P r'cosa p(r')dt’ Since « is the angle between r’ and r
11, PN gt r'cose=r1-1
Viip(r) = e r—zr .| rp(r)dr
p= fr’p(r’}dr’ dipole moment of the distribution:
Vi (1) | p-r
" I" —
dip dmeg r?

"
Thus, the dipole moment of a collection of point chargesis  p = Z qir..
i=l



A physical dipole becomes a pure dipole, then, in the rather artificial limit
d — 0. g — oo, with the product gd = p held fixed.

Zlh
Monopole moment Q does
not change with the shift of \

charge g from the origin 72
/O q y
4 x
vi la - f Flp(r!) d]'.'! - \/(r! — ﬂ)p(rf)dr’
dt’
¥ :fr’p(r’)dr’—afp{r’)dr’r:p— Qa.
- Dipole moment does change with the shift of

origin but an exception happens when the total
charge is zero.



Dipole Electric field

r-p _ pcosé

Viip(r, ) = = ,
aip(r> 6) dmegr?  dmegr?
aV  2pcosf
E, =— =
or 4 egr3
[aV  psinég
EE" = —— =
r 98  dmweor?
1 oV
rsing d¢
E . . p ; ~ . o~
dip(r, 0) = (2cosOr+sinf 0)

dregr3



Dipole Electnic feeld

p N
Egip(r, 0) = e (2cosAF +sinb ) ' (6= 0)
Lé
e r[‘
(6=3m2) i‘<—1 m (0=m/2)

S

0
l (6= m)
r



Twsent Deelectric with Batteny disconnected - (Yharge

A parallel plate capacitor is charged with a battery to a total charge @)

on the positive plate and the battery is removed. A slab
of material with dielectric constant k is inserted between the plates.

The charge on the positive plate of the capacitor

= ‘|‘Q + ++++++ _I_?
—Q j__ Vo K

iNncreases.

decreases.

stays the same.



Twsent Deelectrie with Batteny disconnceted - (harge

A parallel plate capacitor is charged with a battery to a total charge @)

on the positive plate and the battery is removed. A slab
of material with dielectric constant k is inserted between the plates.

The charge on the positive plate of the capacitor

F o+ 4 —I—Q + ++ + +++ +?
—Q j__ VU K

iNncreases.

decreases.

stays the same.

If there is no wire or other conducting connection between the top and bottom plates of the capacitor, the charges on the
plates cannot move and therefore they don't change when the dielectric is inserted.



Tnsent Dielectric with Batteny disconnected - Polential

A parallel plate capacitor is charged with a battery to a total charge @) on the positive plate and the battery is removed. A slab
of material with dielectric constant & is inserted between the plates. The grey circle represents a meter which measures the

voltage between the top and bottom plates. It is not a battery that supplies voltage or a wire connecting the two plates. The
potential difference V' across the plates of the capacitor

£ +l+ + £ o4+ 4
) )
/ K ?
R VOLTS T VOLTS
increases.
decreases.

stays the same.



Tnsent Dielectric with Batteny disconnected - Polential

A parallel plate capacitor is charged with a battery to a total charge @) on the positive plate and the battery is removed. A slab
of material with dielectric constant & is inserted between the plates. The grey circle represents a meter which measures the
voltage between the top and bottom plates. It is not a battery that supplies voltage or a wire connecting the two plates. The
potential difference V' across the plates of the capacitor

VOLTS VOLTS

increases.

decreases. «+

stays the same.

If there is no wire or other conducting connection between the top and bottom plates of the capacitor, the charges on the
plates cannot move and therefore they don't change when the dielectric is inserted. However, the dielectric does reduce the

electric field created between the plates by those charges by a factor of 1 /k. If E goes down, the voltage between the plates
must also go down.



Deéelectnie Capacitor Enengy - 1

A parallel plate capacitor is charged to a total charge @ and the battery is disconnected. A slab of material with dielectric
constant K is inserted between the plates. The energy stored in the capacitor

I
T o

0 increases.
' decreases.

' stays the same.



Deéelectnie Capacitor Enengy - 1

A parallel plate capacitor is charged to a total charge @ and the battery is disconnected. A slab of material with dielectric
constant K is inserted between the plates. The energy stored in the capacitor

I
T o

L increases.
O decreases. v
' stays the same.

The energy stored decreases. With no connection between the plates, the charge does not change. However, the dielectric
reduces the electric field and hence reduces the amount of energy stored in the field.

Another way to think about this is that the dielectric increases the capacitance while the charge remains the same. Using the
equation U = Q2/2C', we can see that the potential energy drops.

Why does the energy go down? The electric field induces positive and negative charges on the bottom and top plates of the
dielectric, respectively. Those induced charges are attracted by the opposite charges on the capacitor plates and so the
dielectric is pulled into the capacitor. That force could be used to do work or could create kinetic energy of the dielectric as it
moves in. That energy must come from somewhere, so the energy stored in the capacitor must go down.



Deéelectnie Capacitorn Enengy Z

A parallel plate capacitor is charged to a total charge Q). While the battery is still connected a slab of material with dielectric
constant k is inserted between the plates. The energy stored in the capacitor

P
I

' increases.
O decreases.

0 stays the same.



Deéelectnie Capacitorn Enengy Z

A parallel plate capacitor is charged to a total charge Q). While the battery is still connected a slab of material with dielectric
constant k is inserted between the plates. The energy stored in the capacitor

S
R -

' increases. ¥

decreases.

O

0 stays the same.

The energy stored increases. After the dielectric is inserted, the potential difference between the plates remains the same
because the plates are connected to the battery. The capacitance, however, increases due to the dielectric material. Using the
equation U = GVbiﬂ/l we can see that the energy increases. Compared to the situation before the dielectric is inserted,
the voltage is the same and the capacitance increases from C to kC'

Where does that increase in energy come from? If the voltage is fixed and the capacitance goes up, then the charge on the

capacitor Q = CWVpau must also go up. The battery needs to supply energy to move this additional charge across the
potential difference between the plates.



0 =«0o

C =«
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o CONDUCTOR

Now the experimental fact is that if we put a piece of insulating material like
lucite or glass between the plates, we find that the capacitance is larger. That
means, of course, that the voltage is lower for the same charge. But the voltage
difference is the integral of the electric field across the capacitor; so we must
conclude that inside the capacitor, the electric field is reduced even though the
charges on the plates remain unchanged.



Capaciton

CONDUCTOR

/////A$ﬁﬂﬁﬁﬁ/—//

'

%%%/X/%%%%%V/%V

CONDUCTOR

If we put a conducting plate
in the gap of a parallel-plate condenser, the
induced charges reduce the field in the con-
ductor to zero.



Dielectric constants of various substances

Dielectric

Substance Conditions constant (k)
Air eas, 0°C, 1 atm 1.00059
Methane. CHy gas, 0°C, 1 atm 1.00088
Hydrogen chloride, HCI eas, 0°C, 1 atm 1.0046
Water, H,O gas, 110°C, 1 atm 1.0126

liquid, 20°C 80.4
Benzene. CgHg liquid, 20°C 2.28
Methanol. CH3OH liquid, 20°C 33.6
Ammonia, NH3 liquid, —34°C 22.6
Mineral oil liquid, 20°C 2.24
Sodium chloride, NaCl solid, 20°C 6.12
Sulfur, S solid, 20°C 4.0
Silicon, Si solid, 20°C 11.7
Polyethylene solid, 20°C 2.25-23
Porcelain solid, 20°C 6.0-8.0
Paraffin wax solid, 20°C 2.1-2.5
Pyrex glass 7070 solid, 20°C 4.00




Atomic Polarisability

The time-average distribution in the normal
hydrogen atom. Shading represents density of
electronic (negative) charge.

In an electric field, the negative charge is pulled
one way and the positive nucleus is pulled the
other way. The distortion is grossly exaggerated
in this picture. To distort the atom that much

would require a field of 10'° volts/m.



Atomée Polarizalility

Since the atom was spherically symmetrical before the field E was
applied, the dipole moment vector p will be in the direction of E. The
factor that relates p to E 1s called the atomic polarizability, and 1s usually
denoted by «:

p =c«E

We should expect the relative distortion of the atom’s struc-
ture, measured by the ratio Az/a, to have the same order of magnitude as
the ratio of the perturbing field £ to the internal fields that hold the atom
together. We predict, in other words, that

/_\zm E

=, p=eAz~ dnepa’E
a e/4mepa-




(a)

E P
T ~ H =

| 5 ——— '
F =F F =0F r " S k.
=E 5 o —» 9 e
- q el X _

N=rxFy+(-r) xF_
N = %quinQ -+ %quinQ = sqEsmé = pEsiné
N=pxE

When the total force on the dipole 1s zero, as it 1s in this case, the torque 1s

independent of the choice of origin



to Bp
/ Ndé':f pEsin6 dé = pE(1 — cos )
0 0



Fonce on a dipole (Pou-aniform E)

AEy = (VE,) -d. — AE = (d-V)E

F=(pV)E

Hydrogen chloride




The Field of a Polarnczed Object

Pl

_ . . | P L .
For a single dipole p‘ V(r) = o -
| [PO)-4 :
V = d : 1
(r) e f 2 T ‘ total potential
V

1 1 N
V = P.-V'|-)dt / _
43?60.[ (4) o v (1) T2

Vv
V.- (fA) = f(V-A)+A-(V])

1 P 1
V = fV’-(—) dr’—f—(V’-P)dr’
4 eg ) )
v

V




The Field of a Polarized Object

| | l I
V = %—P-da’— [—(V’«P)dr’
4.‘:‘?69 2 4.‘:"{(:’[:. v
S V

4

divergence theorem.

1 1
V(r) = f@daur [@dr’
43‘1’6{] L 43‘?6[} /L
S V

P-n pr—V*P.

Op



Electnée field of a Uniform Polanized Sphere
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A sphere of lined-up molecular dipoles (a) is
equivalent to superposed, slightly displaced,
spheres of positive (b) and negative (c) charges.



Electnic field of a Uniform Polanized Sphene
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Electnic Field of a Dipole
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Plates alone Dielectric alone



Electric Field inside a Capacitor

The fact that the E fields are the same implies that the total charge
on and near the top plate in the dielectric-filled capacitor must be the
same as it was in the empty capacitor, namely (p. Now, the charge is made up
of two parts, the charge on the plate Q (which will flow off when the
capacitor is discharged) and Q’. the charge that belongs to the dielectric.
The charge on the plate is given by Q0 = x(Jo. That was our definition
of k. Therefore, if Q4+ Q" = Qg as we have just concluded, we must have

Q' =0p—0=0p( —x)

We can think of this system as the superposition of a vacuum capac-
itor and a polarized dielectric slab. . In the vacuum
capacitor with charge xQy. the electric field E” would be « times the
field E. In the isolated polarized dielectric slab the field E” is —P/¢p. as
superposition of these two objects creates the actual field E.

E—E' +F =vE— "
€0



Electnic Field inside a (Cagacitor

~ ol o P
E=EFE"+EFE =«kE— —
€0

which can be rearranged like this:

P
— =x — 1
eoE

The ratio P/egE (which 1s dimensionless) 1s called the electric suscepti-
bility of the dielectric material and is denoted by ¥, (Greek chi):

P
e = —— == P = y.eoE
eoE

Xe =k —1 — k=144 ye




Gawss s Law in presence of Dielectrice

P =pp+pr

(bound) charge, pp = —V - P within the dielectric and o = P - fi on the surface.

and Gauss’s law reads
&©V-E=p=pp+pr=-V-P+p;

where E 1s now the fotfal field, not just that portion generated by polarization.

V. (EDE+P) = pPf-
D =¢E+ P, isknown as the electric displacement.

In terms of D, Gauss’s law reads

‘E"-D:pf.



Gawss ¢ Law in presence of Dielectrie

In terms of D, Gauss’s law reads

in integral form,

%D-da= Q fon
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Lenearn Dielectnico

P= EU}(EE

The constant of proportionality, .. is called the electric susceptibility of the

medium (a factor of €y has been extracted to make y, dimensionless).

In linear media we have

D = ¢E +P = ¢E + o x.E = €o(1 + x.)E,
so D 1s also proportional to E:
D =¢E e =eo(l + xe)

This new constant € 1s called the permittivity of the material.

€ 1s called the permittivity of free space



1 1
€above E above — €below E below
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Ewerngy in Dielectric System

W=1cv? work to charge up a capacitor

| =

If the capacitor 1s filled with linear dielectric, its capacitance exceeds the vacuum
value by a factor of the dielectric constant,

C = € Cyy

€0

2

W — e”f E24d lfDEd
7 €r T—E . T

W = f E?dr general formula for the energy stored



E=E)+E.

Eg

+ + + + + + + + + + +

The sources of the field E, remain fixed. The
dielectric sphere develops some polarization P.
The total field E is the superposition of E; and
the field of this polarized sphere.

The total field E is no longer uniform in the neighborhood of the

sphere. It is the sum of the uniform field Eg of the distant sources and a

field E generated by the polarized matter itself:



A Dielectric Sphere in a Uuniform Ficld

E=Ey+E.

This relation is valid both inside and outside the sphere. The field E’
depends on the polarization P of the dielectric, which in turn depends on
the value of E inside the sphere:

P = x.¢0Ein = (k — DeoEin.
Remember that the E that appears in this expression involving y, 1s the
total electric field.

E, = —3 relation between the polarization P of the sphere
3e , S
0 and its own field at points inside. E;

E = —(x — DEy/3.



A Dielectric Sphere in a Uuniform Ficld

Kk — 1
3

Ein =Eo -

!

3 .
R - total field inside the sph S
Ei, = (2+K)ED ‘ otal field 1nside the sphere as

Ein

Because « is greater than 1, the factor 3/(2 4+ «) will be less than 1; the
field inside the dielectric is weaker than Eq. The polarization 1s

P = (K —1)EDEin — P:B(E;;) eoEq

K



-

I )
The total field E, both inside and outside the
dielectric sphere.



A4 Dielectric Sphene in a Uniform Field

To summarize, we found E;, by effectively equating two different
expressions for the field E! caused by the polarized matter. One expres-
sion 1s simply the statement of superposition, E‘i'n = E;;, — Eo. The other
expression 18 E’i'[,1 = —(xk — 1)E;, /3, which comes from the facts that E‘i'n
1s proportional to P (in the case of a sphere) and that P 1s proportional to
E;, (1n a linear dielectric).

To compute the total field Eqy outside the sphere we must add vectorially
to Eg the field of a central dipole with dipole moment equal to P times
the volume of the sphere.
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Question:

What is the relation between the atomic polarizability « and the susceptibility y.?
In a linear dielectric » P = ¢y, E polarization is proportional to the field

[f the material consists of atoms (or nonpolar molecules), the induced

dipole moment of each one is likewise proportional to the field p = «E

Since P (the dipole moment per unit volume) is p (the dipole moment per atom)
times N (the number of atoms per unit volume), P = Np = N«E, one’s first incli-
nation is to say that

Na

e = ——
€0




Total Macroscopic field
in the medium

Field due to everything
except the particular atom
under consideration

Imagine that the space allotted to each atom is a sphere of radius R

The density of atoms 1s N = @ K3%Tr 75 -




The macroscopic field E is Egeis + Eelse

Esais is the average field over the sphere due to the atom itself.

I p
Ese —
s dmeg R3
1 «
E=- - Ee se Ee se
dreg R3 lse T el

v Na
= (1- - Ee se — —
(e (o3



lawscus -Mossot?e Formala

1«
E=— -Eese*Eese
Adeq R3 : :

— (1 — {\ ﬂ) Eelse
36.3

P = NaEce

Na
P = : E = o\ .E
11— Na/3e) oA

B Na/eg
Xe =™ 1= Na/3e)




lawscus -Mossot?e Formala

Na/eg Na Na
e — Xe = ~ Xe = —
Xe ™ (1= Na/3e) ‘ 3eq o




Langevin Formala for a polar subotance

The L;_mgevi-n equatimi tells you how to calculate the susceptibiiity of a

polar substance, in terms of the permanent molecular dipole moment p

The energy of a dipole in an external field E 1s u = —p-E = —pE cos#

where 6 1s the usual polar angle, if we orient the z axis along E.

Statistical mechanics says that for a material in equilibrium at absolute temper-
ature 7', the probability of a given molecule having energy u is proportional to

the Boltzmann factor,
exp(—u/kT)



= kT{

The average energy of the dipoles is therefore

fue_(”ﬂm dQ
<uU> = where dQ2 =sin6dof d¢

/ e~ WD) g0

B fpr ue R qu (kT2 w/kT —(u/KkT) — 1“?1?351

pr e—u/kT y, —A:TE_”/’ICTEEPE

[ePE/KT _ pE/KT| o [(pE /KT )e PE/KT 4 (pE/KT)cPE/KT]

o—PE/KT _ _pE/kT

}



| EpEﬂﬁT + E—j‘JEfkT pE
(u)= kT — pE LpEfkT - EpE/’kT] = k1" — pE coth (AT)
P = N(p)
(p) = (pcos@)E

= (p-E)(E/E) = —(u)(E/E)

- —(u)
P=Np
pE

| pE\ KT
_ Np{cotl e
r p{m 1 (AT) IJE}




Langevin Formala
Lety = P/Np, « = pE /KT

Then y = cothax—1/x.

3

Ab';t:%[]._y:(%jt%—i—:Jr---)_é:

il

As & — oo, y — coth(oo) =1

_

pE /KT

I



Langevin Formala
For small @, y =~

P . pE
Np ~ 3kT

FE
L

~ Np®
P gpl = coXe




Auerage potential (Laplace s Equation)

Electrostatic potential at any point P in a charge-free region is
equal to its average value over any spherical surface ( radius R)
centered at P

. 1 .
Vave(R) = 53 / V(r) da.

1

A7

Vave (I?)

/ V (R, 0, ) sinf df do.



Auenage potential (Laplace s Eguation)

1
Vave (1) = Ar /V(R,QF@) sin 6 df do.
A
dvrave 1 81/7 . 1 L ' |
AR 4rm ﬁﬁm@d@d@: I (VV - 1)sinf d6 do
1

= /(VV) . (R*sinfdf dot)

1 ,

1
= 17 /(VQV) dt
A

=0

S0 Vive 18 Independent of R—the same for all spheres

Vave(R) = V (0) (taking the limit as R — 0)




Auerage potential (Coalomb ¢ Law)

The value of V at point r is the average value of V over a spherical surface
of radius R centered at r:

Vir) =

1
V da.
amezf .

sphere

2 =724+ R* —27R cos ¥

|
Vive = IR e [[4, + R*> —2zR cos 0] V/? R? sinf dé d¢
q ) "
= R? —2zR &
dreq 27R‘/Z N 7
q
Ay R - i R
= e ZZR[( + R) —(z—R)]

I g | 1
T dmep 2 - potential due to g at the center of the sphere

-y



a be the angle between 2 and the =z &Xiﬂ\

1 :
Ea,ve — E da Z
irR? jig “

= — d
47TR2 47r€0 / rosada

E... points in the —2z

-y



Auenage Electric field (Coulomt s Law)
24+ ? - R? cosoe  z? 4+ 72 2% — R?
27 z » B

COS (v =

2 2 2>7 3
z — Rcosf
(R2 + 22 — 2Rz cos 6)3/2

22=R?>1:%2_9Rzcosb —

R q z — Rcos#t 5 . ,_
Eave — — R 11 9 ]9 ].
“1672R2¢, / (R?+ 22 — 2Rzcos@)3/2 7 0¢
_ __qz / 2z — Rcos#t i1 do
8meo Jo (R? + 22 — 2Rz cos 6)3/2

qZ /1 z — Ru ]
= —- u
8meg J_1 (R? + 22 — 2Rzu)3/2

!

The integral I where u = cos6



Auerage Electnic field ((Coalomb s Law)

1 1

7 1
B RVR?2+ 22 —2Rzu

11 1 1 . 1 1
_R(|z—R| z—|—R) 2Rz2[|’z Rl=(+ 8+ (& +z)(|z—R| z—I—R)]

1
1 2Rz2?

2 9
(\/RQ—I—zQ—ZRzu—I— R+ )

VR +22 —2Rzu

—1

(a) If 2 > R,

1 1 1 1 1 1
I:E(z—R_HR)_ZRzE [[z—R}—(z—I—R)—I—(R?—l—zz)(E_R_z_I_R)]

zi( 2R )_%[—2R+(R2+z2) 2k ]:%

R\ 22 R?2 2Rz

E&we — Z



Auerage Electnic field ((Coalomb s Law)

1 1

1

7 1
B RVR?2+ 22 —2Rzu

1 - 2R:22

R? 4+ 22 )
VR2 + 22 —2Rzu

(\/RQ + 22 —2Rz2u+

—1

11 1 1 . 1 1
_R(|z—R| z—|—R) 2Rz2[|z Rl =(z+ R)+ (R +z)(|z—R| z—I—R)]

(b) If » < R,

1 1 1 1 1 1

:i( 2 ) ! [—2z—|—(RQ—|—zg) 2 ]:0.

R\R2_:2) 2R»? R2 _ 2

Eapve =0



Laplace’s Equation 1n spherical coordinates

In the spherical system, Laplace’s equation reads:

[ 9 (,0V N I a9 [ Qav N [ 9%V 0
—— | rF— sin @ — =
r2 or ar r2siné 96 90 r2sin® @ 0¢?

Azimuthal
Symmetry
0 ,dV I 9 . adV
— | r°"— )+ ———|(smé— | =0
ar ar sinf a6 a6
V(r.0) = R(r)®®)——> Solution for separation of variables

| d (LdRY 1 d (. dO)
Rar\" ar) " @sinoas """ an ) T



Laplace’s Equation 1n spherical coordinates

L d (LdRY 1 d (. dOY _
Rar\" ar ) " esinoas " as ) T

e N

first term depends only on r, and the second only on 6

| d [ ,dR I D) n
Rar \"ar ) =0T

__ 1 (1+1) separation

! d Sin9d® = Il +1) constant
®sinf do do

—

d dR B
ar (FEE) =SIURVM General Solution R(r) = Ar' + pl+1
d o doe :

0 sin ¢ 70 = —I({ 4+ 1)sinf © EELACIEIGIINES O(0) = Pi(cosh)




Solution of Laplace’s equation for spherical symmetry

General solution is the linear combination of all solutions

V(r,0) = Z Airt + Pi(cosB).

41
!
=0

CASE -1 (Potential inside the sphere)

The potential Vy(0) is specified on the surface of a hollow sphere

B; = 0 for all [—otherwise the potential would blow up at the origin

oo
Vir,0) = Z AEFEPE(CDS 0)
=0

At r = R this must match the specified function Vy(6):

0
V(R.O) = ZA;R‘Pg(cos 8) = Vo(0)
=0



Fourier analysis to determine the constants

0
V(R.6) = ZA;R‘Pg(cos 8) = Vo(0)

=0 \
Multiplying by

1 T
[P;{I}Pp(_x:)dx:f Pi(cos8) Py(cos 6) sin 6 d6 Py (cos @) siné
—1 ]
0. Y and integrating
I . iflr =1
20+ 1
Ay R" = | Vo(6)Py(cos®)sinb do.
'R S ﬁ 0(0) Py ( )
20+ 1 [T
A = + Vo(0)P;(cosf)siné do
2RI J,



Potential 1s determined outside the sphere

CASE-2 (Potential specified on the surface but to be determined for r > R)

In this case 1t’s the A;’s that must be zero

o0

B
Vir,0) = Z N%P!(CDS 0)

1=0
At the surface of the sphere,

o0

B,
V(R,0) = Z T IP;(CD*;Q) — V(0)
[=0

RI-T2V+1 Vo(#) Py(cos 8) sin€ df | qoendre Polynomial

-

B, = RHI f 0)P;(cos ) sinf db

By 2 f"‘ Using orthogonality of
0



Constant Potential on the surface of the sphere. Find V, inside and outside the sphere

Suppose the potential is a constant Vi, over the surface of the sphere.

Inside: V(r.0) = Ayt Py(cos )
=0
2o +1) [
A = ( 2; )/Vb(ﬂ)ﬂ(cosﬁ) sin @ d#
0 Py(cosh) =1
o1 N7 Insert in the integral
A; = (2 ;LRE) 2 [ Py(cosf)sinbdb

.1 [0t 1#0
/Pﬁ(c:{)b 0)P;(cos @) sinf df = { 2. if | = 0}

0



Potential i1nside the sphere

/ Pj(cos#)sinf db

0
D KUR RS
TN Ve, it =0

V(r,0) = Agr°Py(cos8) = Vo

(21 + 1)V}
OR!

A =

The potential is constant throughout the sphere.



Potential outside the sphere

-

Outside: V (r,0) = Z }le Pi(cosf)

QZH Rf“/vg )Py (cos 8) sin 6 d6

0
2A+1) r [ o (0, if1#£0
> R'™7™Vy | P(cosf)sinfdf = RV, if 1 = 0
0
V(r6) = Voo
,

\ 4

equals Vy at » = R, then falls off like —

1

r

}



Dipole Electric field

r-p _ pcosé

Viip(r, ) = = ,
aip(r> 6) dmegr?  dmegr?
aV  2pcosf
E, =— =
or 4 egr3
[aV  psinég
EE" = —— =
r 98  dmweor?
1 oV
rsing d¢
E . . p ; ~ . o~
dip(r, 0) = (2cosOr+sinf 0)

dregr3



Torque on dipoles due to their mutual interaction

P1

Fleld of p1 at po E; = 1 3
deqr

6 (points down)

Torque on pa: Na = py x E; (points into the page)

= }JQEl sin 90° = ngl
P1pP2
Amegr

3

O =m/2

Field of po at p; Eg = P2 (—2T1) (points to the right)

Aregrs

Torque on py: Ny = p; x E, (points into the page)

2p1p2
3

Amegr

0=m




Fnergy of an 1deal dipole

For a physical dipole, with —¢ at r and +¢ at r 4+ d,

r+d
U=qV(r+d) —qV(r)=qV(r+d)— V() =q [/ E- dl

For an ideal dipole the integral reduces to E - d, and

U=-¢E-d=-p E




Electric field of a dipole (coordinate-free form)

[3(p - ©)F — p]

Egip(r) =
P TEy I3

Proof: p:(p’f.)’f._l_(pé)é
:pcosﬁf—psinﬁé

3(p-T)T—p = Spcos(:?f—pcoséf—l—psin@é
— 2pcos@f+psin9§



Interaction energy of two dipoles

U= —p1-E2

Ez = -— 5 [3(p2-F) ¥ — p2]

U = 47360 = [P1-p2 — 3 (p1-F) (P2



Potential of a uniformly polarized sphere

] P(r') .2
V) = [ @2 4
dmreg 2
V
Vv — 1 P-’& - Field of a uniformly charged
— 4ATep / sphere divided by the volume

charge density

1 2
=P {4176.3 f ) QdT}

r 3 “
1 (4/3):;1'1% P r>R).
1 i 1 | 4meo r
1 / PR >
TEp P 1 (4/3)7R3p r < R
\ 4ﬂ'ED R3 £, AT < ) 4
(RS R3P cosf )
Pr= NN R),
Segr2 3 3egr? (r>R),
Vir,8) = 4 ,
Lp, [Presd] gy
L 3E||] 3E{|

A




A dipole p is situated at the origin, pointing in the z direction.

(a) What is the force on a point charge ¢ at (a, 0, 0)
(b) What 1s the force on ¢ at (0,0, a)?

(¢) How much work does it take to move g from (a, 0, 0) to (0,0, a)?



A dipole p is situated at the origin, pointing in the z direction.

(a) What is the force on a point charge ¢ at (a, 0, 0)

(b) What 1s the force on ¢ at (0,0, a)?

(¢) How much work does it take to move g from (a, 0, 0) to (0,0, a)?

(a) (@00 My r=a =2 ¢=0,
P4 p ; Pq .
drega’ Amega3 (—2) 1 Aregad Z
(b) (0,0, a) r=a, 6 =0,
P . 2p 2pq .
E = 21) = F = 7.
4’?1'6[}{13( f) Arega’ “ drega’

© W = q[V(0.0.) = V(a.0,0)] = 2 [cos(0) — cos (7 )]
» Ameqga 2

dmega

2



Consider two nested cylindrical conductors of height h and inner and outer radii a & b, respectively, as shown in the figure. A

charge 4 is evenly distributed on the outer surface of the inner cylinder, and —@ is uniformly distributed on the inner
surface of the outer cylinder. Assume that h 3 b so that the cylinders are effectively infinitely long and end effects can be
ignored.

|} h T——y i
— / \\
=
l |

/

L

\

Calculate the magnitude of the electric field between the two cylinders (@ < 7 < b).

Calculate the potential difference between the inner and outer cylinders,

Calculate the capacitance of this system.



Calculate the magnitude of the electric field between the two cylinders (@ < r < b).

For this we use Gauss's Law, with a Gaussian cylinder of radius r, height [:

B.dA — omplg — Dinside _ Q-

Gaussian cylinder €0 o h

Q

2mregh

E(7)a<r<p =

Calculate the potential difference between the inner and outer cylinders.

2nr'egh

AV =V(a) — V(b) = — A Q4

Q




Calculate the capacitance of this system.

el el ok
AaviT el b b
2negh  a a

Note that ) cancels out as expected. The capacitance depends only on geometry and &.

Find the electric field energy density (energy per unit volume) as a function of radius at any point between the

conducting cylinders. Use that density to determine how much energy resides in a cylindrical shell etween the conductors of
radius r (with @ < p < b), height h, thickness dr, and volume 27rrhdr? Integrate your expression to find the total energy
stored in the capacitor,

The electric field energy density stored in the capacitor is

1 1
ug = —gg % = —Eu(

2
2 2 2mregh )



The energy stored in a cylindrical shell of length [, radius 7, and thickness dr is

@ dr
Adegh T

dU = ‘HEdV = lEn (

2
5 ) 2nrhdr =

2nregh

Integrating we find that the total energy stored is

b b 2 2
B B Q° dr Q@ b
U_£ dU = . Ameoh T 41r5ghlna

C = 2wegh/In(b/a), therefore

_ @ 1o
U= = ,CAV® = _QAV



Coaxial Cable with Dielectric

A certain coaxial cable consists of a copper wire, radius @, surrounded by  concentric copper tube of inner radius ¢. The

space between is partially filled (from b out to ¢) with material of diectric constant K. The goal of this problem i to find the
capacitance per unit length of this cable. You may neglect edge effects,

Assume that the copper wire has uniform positive charge per unit length A and the copper tube has uniform

negative charge per unit length on it's inner surface — A, Calculate the radial component of the electric field for 0 < r < @,
a<r<bb<r<candr>c r



Gfree

KE(

Let's apply Gauss's Law ﬁ E.dA = for each region.

Fora < r < b: The dielectric constantis kK = 1

qfree
€0

E.4A =

Gaussian cylinder of radius r such that a < r < b, and length d,

$ 8 -d& =27Brd  dpree = Md

orrd— % s p— 2
€0 ZHEQT

,a<rT<b

b<r<c¢ Thedielectric constantisk = 1

Gaussian cylinder of radius 7 such thata < r < b, and length d,

Gauss' law becomes
Ad A
2nErd = — = E =
KEQ 2TKEQT

,b<r<e



The region r < a is inside the conductor and for 7 > ¢ there is no charge
enclosed in the Gaussian surface, and so the

electric field is zero in those areas.

F,a<r<b

li, b<r<ec

2wkeg T
—

L0, r>c.

What is potential difference between the surfacesr = bandr = a?
What about between surfacesr = candr =5 ?

What is the value of |V (¢) — V(a)|?




The electric potential difference between surfaces r = a

and r = b may be found as an integral of electric field

along radial direction (independent of the integration path).

b
V(b) — V(a) = —fa A Lo

211‘51] T

A b A a

— — In— = In —

2reg a  2mweg b

Between the surfacesr = cand r = b,
S W |
Vie)—V(b) = — /b o dr

oA e At

C9mkey b 27mkey



Thus the electric potential difference between the wire and the tube is

V(c)—V(a}=—/j A 10!1'—/: A ld'r

2meg T K2TEQ T
A a 1 b
= In—+—In—]|.
2meg [n b N K c]

Because we are moving from a positive charge to a negative charge,
we get a negative voltage difference (recall thatlnz < 0

if z < 1), so the absolute value of the voltage difference is given by

X — [111% +11115]

27E kK b

What is the capacitance per unit length of the cylindrical arrangement?



The capacitance per unit length is

C B Q/L
L |AV]
B A
A b 1. ¢
2meg []nE-I_E]n E]
_ 271'80
a K b

Capacitance depends only on the geometry and not on the charge.



Average Field i1inside a sphere

The average field due to a point charge ¢ at r 1s

1
E.ve = (%TTRS) /EdT

Fat

1 1 ’
Eave — — d
(%WRB') deg /Q/Z 2 47

Here r 1s the source point, d7 1s the field point. so 2 goes from r to dr.

e

E, = 1 / pi e » The field at r due to uniform

= 2 .
dmeg G charge p over the sphere is E,

This time d7 1s the source point and r is the field

point. so 2 goes from dr tor. p = —q/ (%'}TRS)



Eae = B, ” p=—aq/ (

B 36(}
g T
deq R3

 dregR3

2R3

3

)



Average Field inside an arbitrary charge
distribution

¥

superposition principle to generalize to an arbitrary charge distribution

If there are many charges inside the sphere,
E... is the sum of the individual averages.

Ptot® sum of the individual dipole moments

P

Iﬂﬂve:::
N Ameq R




Average Fileld of a dipole over a spherical volume of radius R

p
dmegr?

Egip(r. 0) = (2cos@ T +sinb b).

Eqip = 4ﬂ§:r?"3 (2cos@F +sinf Q)

R [2cosf(sinfcospX +sinfsingy + cosfz)
Ameqrd

+ sinf(cosfcospXx + cosfsingy —sinf z)]
__P 35i116'c059005¢5f{—|—35i119t:056'sin¢}?—|—(QCDSQQ—siDEH) Z
Amegrd . ,

=3 cos? H—1

1
Eavs:- — (%ﬂ"—RS)/Edip dr

= (%;RS) (45&0) /r—lg [3sin9c05 flcospX +singy) + (30052 0 — 1) ﬁ] r? sin 6 dr db do




Eave — ( /Edip dt

— 1 ( p )/ig [35in90059(005¢i+5in¢§r)+ (300529— 1) ﬁ] v2 sin 0 dr df do

(%TFRS) dmeg T
2m 2w
/cosc;ﬂdqi) = /sinqz')dqb =0, - X and ¥ terms drop out
0 0 0

R T
Eave = ! ( )Qﬂfldr / 3(:0526' l)siné?dé?
(§WR3 Ameq r
0

Eave =0



E = A& (r) » E within the e-sphere to be a delta function

1
E.ve = (37 19) / A6 (1) dr
SI

B A
(5712
_ P
Ameg R3
A:_f D
0 [ E=——0%r)
36[;.
I A I 3 ] ,
Egip(r) = e 3 3(p-1r)r —pl — gpé‘ (r) » true field of a dipole




