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The sum z; + z2 and product 7172 of two complex numbers
Z1 = (x1,y1) and Zp = (x2, y2)
(x1 +iy1) + (x2 +1y2) = (X1 +x2) +1(y1 + y2),
(X1 + 1y (x2 +1y2) = (x1x2 — y1y2) + i(yix2 + x1y2)
(x1, y1) + (x2, y2) = (x1 +x2, y1 + y2),
(x1, y1)(x2, y2) = (x1X2 — y1y2, y1X2 + X1y2).

(x1,0) + (x2,0) = (x1 + x2,0),

(x1, 0)(x2,0) = (x1x2,0).



commutative laws

(2122)73 = 21(2223)

(21 +22) +23 =21 + (22 + 23),

associative laws

_,—l . X _:'l"‘ -

I'is not defined when z = 0.

The inverse 7
21 (xpFiyp)(xg —iy)

2 (x2 +1y2)(x2 —1y72)
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22 = (x1 +x2)+i(y1 + y2)

22 = (X1 —x2) +i(y1 — y2)



g=x+1y

Rez=x, Imz=1y

= VT E

2I° = (Re2)* + (Im2)°
Rez <|Rez| <|z] and Imz <|Imz| <|z|.

121 + 22| < |z1] + |22] » triangle inequality
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complex conjugate

21+ 22 = (1 +x2) —i(yr +y2) = (x1 —iy1) + (x2 —1y2).
71— 22
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z=x+1y
X = JF COos 9 y=r Siﬂg

Zz=r(cosH +isinb)

~
N

- X r=|z|

As in calculus, 6 has an infinite number of possible

values, including negative ones, that differ by integral multiples of 2.

Each value of 6 is called an argument

of z, and the set of all such values is denoted by arg z.



The principal value of arg z,denoted by Arg z,

is that unique value ® such that —7 < ® < 7.

argz = Arg 7 + 2nm (n=0,x1,%£2,...).
Also, when 7z is a negative real number, Arg z has value 7, not —r.
e'91¢'%2 — (cosB; + i sinf)(cos By + i sinby)

= (cos 0y cos 2 — sinty sinty) + i(sin ) cos Oz + cos O sin 6y)

— cos(f] + 62) + i sin(0] + ) = ' O1102)



Argi = 7,
Arg1 =0,

Arg(—1) =,

Arg(1 — i) =
Arg(—i1) = —
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@ Convenient notation: € = cos# - jsiné.

@ Note: e/(0+2m) — gl — gl(0+47) — ... _ gl(0+2kT)
o 67 =
Qo efﬂ' — _‘I,
x qa
@ €7 = =
e >
Qo 62?{'}" — 1



21 =r1€' 7y = rpei®

7127 = rlelglrzelgz — rlrze.!@le.!@g — (rlrz)el(gl—l—&g)

7 i6] i6; —i6, i(61—65) |
i ne™ o ele e I i (61=67)

" = p"e"? (n=0,+1,+2,...).

@ =M (n=0,%x1,42,..)



de Moivre’s formula

(cos@ +isinf)" =cosnf +isinnd (n=0,+1,+2,...)

Use de Moivre's formula to derive the following trigonometric identities:

(a) cos 30 = cos’® @ — 3 cos B sin® B; (b) sin360 = 3 cos? O sinf — sin’ 6.



Roots of Complex number

l"-‘f]
two nonzero complex numbers
z=re 721 =r1e'" and 7y = rpe'®”
4 0
\ are equal if and only if
0 X
ri=ro and 61 =0+ 2km
where k is some integer (k =0, &1, &2, ..

The method starts with the fact that an nth root of zg

is a nonzero number z = re'? such that 7" = zp,

n _in6 fo

r'e'™ = rpe'



n ,in6 )

r'e'” = rpe'

r'"" =rg and n@ =6y + 2km
(k=0,+1,4+2,...)

r = /ro
0 Oy + 2k Ao | 2k
— — I
n n n
7= rgexp[i(go +2kn)i| (k=0,=x1,+£2,...)
n n

nth roots of 7
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v, 2k
cr = Yro exp[f(—o — —R)]
‘ n n
Ck
‘ (k=0,1,2 n—1)

O ne— x ey

o 2k
Cr = /rp exp (i—ﬂ) exp (I—R)
n

n

co is referred to as the principal root.

2T 2k

k
— —_— . = ex | ——
w exp(f - ) # , p( - )

Ck=(?(]w§ (k=0,1,2,....,n—1)

w, represents a counterclockwise rotation through 27 /n radians.



4j = 4€'7 .

(4i)2

Square roots of 4/

SO p:4.pziandn
2

— V4.eE+F) k=01

- [2.€F if k =0

2. €ETT) ik =1

= +(V2+iV2).



Cubed roots of —8

(—8)s = /8.-6(GT%) k=0,1,2
2.¢l3 if k=0

— {2.6"=_2 ifk=1
2.el% if k=2



Cube roots: 11/3

(= 1+3))

2 (=1-3i)



Cube roots: /3

(—V3+1i) 7(V3+1)

1
2




Cube roots: (— 1)1/3

+(1-+31)

(1=V31)

N =



Show that
(a) cosnf =cos" O — (;) cos" 20 sin” 0 + (2) cos"*osin*0 — ...,

(b) sinnb = (T) cos" 10 sin6 — (Z)COS”_BHSiHBQ + e



1

e = cosnf+isinnd = ()" = (cosO+isind)" = (2) cos" ™" B(isind)".

=0
Separating real and imaginary parts we have
[n/2]
n . o
cosnf = E (—1)" cos" % §sin” 6,
Y
=0
[n/2]
, n o1
sinnf = E (—1)" cos" "L Psin? T .

— 20+ 1



Prove that

N—1 :
in(Nx/2
(a) Z COSNX = sm.( */ )cos(N — l)f,
o sin.x /2 2
N—1 .
in(Nx/2
(b) Z SINnx = sm.( */2) sin(N — l)i.
— sinx/2 2

These series occur in the analysis of the multiple-slit diffraction pattern.



Nl 1 — Nz ciNz/2 jiNz/2 _ —iNz/2
E (eir)-n. — _° ’ >

n=0

= ¢/ (N=12/26in(Nx/2) / sin(z/2).

Now take real and imaginary parts to get the result.



Functions of Complex Variable

It we denote the real and imaginary parts of f(z) by u and v,
f(Z) — H(X, y) + iv(xa y)

A function f(z) that is single-valued in some domain R is differentiable at the
point z in R if the derivative
. : ' Az)y—f
j!(z): llm j(Z+ Z) j(Z)

Az—0 Az

(24.1)

exists and 1s unique, in that its value does not depend upon the direction in the
Argand diagram from which Az tends to zero.



The Cauchy-Riemann Relations

ou Ov q ov ou
= an —
ox 0y 0X 0y

These are the famous Cauchy-Riemann conditions. They were discovered by Cauchy
and used extensively by Riemann in his development of complex variable theory. These
Cauchy-Riemann conditions are necessary for the existence of a derivative of f(z). That
is, in order for df/dz to exist, the Cauchy-Riemann conditions must hold.



Derivatives of Analytic Function

f(z) = f if f(2) is analytic

5f ou du dv S+ ou u . v s
= I — | 8x _
x| ox ay oy )
du v v du Cauchy-Riemann equations.
Sf=—+i—|ox+|——+i— )6y
dx dx dx 0x

0 (st isy) 5
=\ I — X T10V). Z
ax | ox e —

5f  du  0v of
= —+ 1 —_
0z 0x ox 0x




Find the analytic function

w(z) =ulx,y) +ivlx, y)

(a) ifu(x,y) =x>—3xy?,

(b) ifv(x,y)=e ' sinx



Two-dimensional irrotational fluid flow is conveniently described by a complex poten-
tial f(z) =u(x,v) +1v(x,y). We label the real part, u(x, y), the velocity potential,
and the imaginary part, v(x, v), the stream function. The fluid velocity V is given by
V =Vu.lIf f(z) is analytic:

(a) Show thatdf/dz =V, —1V,.

(b) Show that V - V =0 (no sources or sinks).

(c) Show that V x V = 0 (irrotational, nonturbulent flow).



