Mathematical Physics - 3 4th Semester BSc Physics (Honours)

Sagar Kumar Dutta

Physics Department

Berhampore Girls' College

Acknowledgement:

- Complex variables and applications J.W.
 Brown and R.V. Churchill
- Complex analysis T.W. Gamelin
- Mathematical Methods for Physicists Arfken
- Mathematical Methods for Physics and Engineering – Riley, Hobson and Bence

It is customary to denote a complex number (x, y) by z

$$z = (x, y)$$

$$x = \operatorname{Re} z, y = \operatorname{Im} z$$

The sum $z_1 + z_2$ and product z_1z_2 of two complex numbers

$$z_1 = (x_1, y_1) \quad \text{and} \quad z_2 = (x_2, y_2)$$

$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2),$$

$$(x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(y_1x_2 + x_1y_2)$$

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

$$(x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, y_1x_2 + x_1y_2).$$

$$(x_1, 0) + (x_2, 0) = (x_1 + x_2, 0),$$

$$(x_1, 0)(x_2, 0) = (x_1x_2, 0).$$

$$z_1 + z_2 = z_2 + z_1$$
, $z_1 z_2 = z_2 z_1$ commutative laws

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3), \quad (z_1 z_2) z_3 = z_1 (z_2 z_3)$$
associative laws

$$z^{-1} = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right) \qquad (z \neq 0)$$

The inverse z^{-1} is not defined when z = 0.

$$\frac{z_1}{z_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)}$$

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$$

$$z = x + iy$$

$$\operatorname{Re} z = x$$
, $\operatorname{Im} z = y$

$$|z| = \sqrt{x^2 + y^2}$$

$$|z|^2 = (\text{Re } z)^2 + (\text{Im } z)^2$$

 $\operatorname{Re} z \le |\operatorname{Re} z| \le |z|$ and $\operatorname{Im} z \le |\operatorname{Im} z| \le |z|$.

$$|z_1 + z_2| \le |z_1| + |z_2|$$
 triangle inequality

$$y$$
 z
 (x, y)
 \overline{z}
 $(x - y)$

$$z = x + iy$$

$$\overline{z} = x - iy$$
 complex conjugate,

$$\overline{\overline{z}} = z \quad \text{and} \quad |\overline{z}| = |z|$$

$$\overline{z_1 + z_2} = (x_1 + x_2) - i(y_1 + y_2) = (x_1 - iy_1) + (x_2 - iy_2).$$

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}. \qquad \overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} \qquad (z_2 \neq 0)$$

 $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$

$$z = x + iy$$

$$x = r \cos \theta \quad y = r \sin \theta$$

$$z = r(\cos \theta + i \sin \theta)$$

$$r = |z|$$

As in calculus, θ has an infinite number of possible values, including negative ones, that differ by integral multiples of 2π . Each value of θ is called an *argument*

of z, and the set of all such values is denoted by $\arg z$.

The *principal value* of $\arg z$, denoted by $\operatorname{Arg} z$,

is that unique value Θ such that $-\pi < \Theta \leq \pi$.

$$\arg z = \text{Arg } z + 2n\pi \qquad (n = 0, \pm 1, \pm 2, \ldots).$$

Also, when z is a negative real number, Arg z has value π , not $-\pi$.

$$e^{i\theta_1}e^{i\theta_2} = (\cos\theta_1 + i\sin\theta_1)(\cos\theta_2 + i\sin\theta_2)$$

$$= (\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 + \cos\theta_1\sin\theta_2)$$

$$= \cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2) = e^{i(\theta_1 + \theta_2)}.$$

- Arg $i = \frac{\pi}{2}$,
- Arg 1 = 0,
- $Arg(-1) = \pi$,
- Arg $(1 i) = -\frac{\pi}{4}$,
- $Arg(-i) = -\frac{\pi}{2}, \dots$

• Convenient notation: $e^{i\theta} = \cos \theta + i \sin \theta$.

• Note: $e^{i(\theta+2\pi)} = e^{i\theta} = e^{i(\theta+4\pi)} = \cdots = e^{i(\theta+2k\pi)}$

•
$$e^{i\frac{\pi}{2}} = i$$
,

•
$$e^{i\pi} = -1$$
,

•
$$e^{i\frac{\pi}{4}} = \frac{1+i}{\sqrt{2}}$$
,

•
$$e^{2\pi i} = 1, ...$$

$$z_{1} = r_{1}e^{i\theta_{1}} \qquad z_{2} = r_{2}e^{i\theta_{2}}$$

$$z_{1}z_{2} = r_{1}e^{i\theta_{1}}r_{2}e^{i\theta_{2}} = r_{1}r_{2}e^{i\theta_{1}}e^{i\theta_{2}} = (r_{1}r_{2})e^{i(\theta_{1}+\theta_{2})}$$

$$\frac{z_{1}}{z_{2}} = \frac{r_{1}e^{i\theta_{1}}}{r_{2}e^{i\theta_{2}}} = \frac{r_{1}}{r_{2}} \cdot \frac{e^{i\theta_{1}}e^{-i\theta_{2}}}{e^{i\theta_{2}}e^{-i\theta_{2}}} = \frac{r_{1}}{r_{2}} \cdot \frac{e^{i(\theta_{1}-\theta_{2})}}{e^{i0}} = \frac{r_{1}}{r_{2}}e^{i(\theta_{1}-\theta_{2})}$$

$$z^{n} = r^{n}e^{in\theta} \qquad (n = 0, \pm 1, \pm 2, \ldots).$$

$$(e^{i\theta})^{n} = e^{in\theta} \qquad (n = 0, \pm 1, \pm 2, \ldots)$$

de Moivre's formula

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta \quad (n = 0, \pm 1, \pm 2, ...)$$

Use de Moivre's formula to derive the following trigonometric identities:

(a)
$$\cos 3\theta = \cos^3 \theta - 3\cos\theta\sin^2 \theta$$
; (b) $\sin 3\theta = 3\cos^2\theta\sin\theta - \sin^3\theta$.

Roots of Complex number

two nonzero complex numbers

$$z_1 = r_1 e^{i\theta_1}$$
 and $z_2 = r_2 e^{i\theta_2}$ are equal if and only if

$$r_1 = r_2$$
 and $\theta_1 = \theta_2 + 2k\pi$

where k is some integer $(k = 0, \pm 1, \pm 2, ...)$

The method starts with the fact that an nth root of z_0 is a nonzero number $z=re^{i\theta}$ such that $z^n=z_0$,

$$r^n e^{in\theta} = r_0 e^{i\theta_0}$$

$$r^{n}e^{in\theta} = r_{0}e^{i\theta_{0}}$$

$$r^{n} = r_{0} \text{ and } n\theta = \theta_{0} + 2k\pi$$

$$(k = 0, \pm 1, \pm 2, ...)$$

$$r = \sqrt[n]{r_0}$$

$$\theta = \frac{\theta_0 + 2k\pi}{n} = \frac{\theta_0}{n} + \frac{2k\pi}{n}$$

$$z = \sqrt[n]{r_0} \exp\left[i\left(\frac{\theta_0}{n} + \frac{2k\pi}{n}\right)\right] \qquad (k = 0, \pm 1, \pm 2, \ldots)$$

*n*th roots of z_0

$$c_k = \sqrt[n]{r_0} \exp\left[i\left(\frac{\theta_0}{n} + \frac{2k\pi}{n}\right)\right]$$

$$(k = 0, 1, 2, \dots, n - 1)$$

$$c_k = \sqrt[n]{r_0} \exp\left(i\frac{\theta_0}{n}\right) \exp\left(i\frac{2k\pi}{n}\right)$$

 c_0 is referred to as the *principal root*.

$$\omega_n = \exp\left(i\frac{2\pi}{n}\right)$$
 $\omega_n^k = \exp\left(i\frac{2k\pi}{n}\right)$

$$c_k = c_0 \omega_n^k \quad (k = 0, 1, 2, \dots, n - 1)$$

 ω_n represents a counterclockwise rotation through $2\pi/n$ radians.

Square roots of 4i

$$4i = 4e^{i\frac{\pi}{2}}, \quad \text{so} \quad \rho = 4, \varphi = \frac{\pi}{2} \text{ and } n = 2.$$

$$(4i)^{\frac{1}{2}} = \sqrt{4} \cdot e^{i(\frac{\pi}{4} + \frac{2k\pi}{2})}, k = 0, 1$$

$$= \begin{cases} 2 \cdot e^{i\frac{\pi}{4}} & \text{if } k = 0 \\ 2 \cdot e^{i(\frac{\pi}{4} + \pi)} & \text{if } k = 1 \end{cases}$$

$$= \pm (\sqrt{2} + i\sqrt{2}).$$

Cubed roots of -8

$$-8 = 8e^{i\pi}$$
, so $\rho = 8$, $\varphi = \pi$ and $n = 3$.

$$(-8)^{\frac{1}{3}} = \sqrt[3]{8} \cdot e^{i(\frac{\pi}{3} + \frac{2k\pi}{3})}, k = 0, 1, 2$$

$$= \begin{cases} 2 \cdot e^{i\frac{\pi}{3}} & \text{if } k = 0\\ 2 \cdot e^{i\pi} = -2 & \text{if } k = 1\\ 2 \cdot e^{i\frac{5\pi}{3}} & \text{if } k = 2. \end{cases}$$

Cube roots: $1^{1/3}$

Cube roots: $i^{1/3}$

Cube roots: $(-1)^{1/3}$

Show that

(a)
$$\cos n\theta = \cos^n \theta - \binom{n}{2} \cos^{n-2} \theta \sin^2 \theta + \binom{n}{4} \cos^{n-4} \theta \sin^4 \theta - \cdots,$$

(b)
$$\sin n\theta = \binom{n}{1} \cos^{n-1} \theta \sin \theta - \binom{n}{3} \cos^{n-3} \theta \sin^3 \theta + \cdots$$

$$e^{in\theta} = \cos n\theta + i\sin n\theta = (e^{i\theta})^n = (\cos \theta + i\sin \theta)^n = \sum_{\nu=0}^n \binom{n}{\nu} \cos^{n-\nu} \theta (i\sin \theta)^\nu.$$

Separating real and imaginary parts we have

$$\cos n\theta = \sum_{\nu=0}^{[n/2]} (-1)^{\nu} \binom{n}{2\nu} \cos^{n-2\nu} \theta \sin^{2\nu} \theta,$$

$$\sin n\theta = \sum_{\nu=0}^{[n/2]} (-1)^{\nu} \binom{n}{2\nu+1} \cos^{n-2\nu-1}\theta \sin^{2\nu+1}\theta.$$

Prove that

(a)
$$\sum_{n=0}^{N-1} \cos nx = \frac{\sin(Nx/2)}{\sin x/2} \cos(N-1) \frac{x}{2},$$

(b)
$$\sum_{n=0}^{N-1} \sin nx = \frac{\sin(Nx/2)}{\sin x/2} \sin(N-1) \frac{x}{2}.$$

These series occur in the analysis of the multiple-slit diffraction pattern.

$$\sum_{n=0}^{N-1} (e^{ix})^n = \frac{1 - e^{iNx}}{1 - e^{ix}} = \frac{e^{iNx/2}}{e^{ix/2}} \frac{e^{iNx/2} - e^{-iNx/2}}{e^{ix/2} - e^{-ix/2}}$$
$$= e^{i(N-1)x/2} \sin(Nx/2) / \sin(x/2).$$

Now take real and imaginary parts to get the result.

Functions of Complex Variable

If we denote the real and imaginary parts of f(z) by u and v,

$$f(z) = u(x, y) + iv(x, y)$$

A function f(z) that is single-valued in some domain R is differentiable at the point z in R if the derivative

$$f'(z) = \lim_{\Delta z \to 0} \left[\frac{f(z + \Delta z) - f(z)}{\Delta z} \right]$$
 (24.1)

exists and is unique, in that its value does not depend upon the direction in the Argand diagram from which Δz tends to zero.

The Cauchy-Riemann Relations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$.

These are the famous **Cauchy-Riemann** conditions. They were discovered by Cauchy and used extensively by Riemann in his development of complex variable theory. These Cauchy-Riemann conditions are necessary for the existence of a derivative of f(z). That is, in order for df/dz to exist, the Cauchy-Riemann conditions must hold.

Derivatives of Analytic Function

$$f'(z) = \frac{\partial f}{\partial x}$$
 if $f(z)$ is analytic

$$\delta f = \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)\delta x + \left(\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right)\delta y$$

$$\delta f = \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)\delta x + \left(-\frac{\partial v}{\partial x} + i\frac{\partial u}{\partial x}\right)\delta y$$
Cauchy-Riemann equations
$$= \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)(\delta x + i\delta y). \qquad \delta z$$

$$\frac{\delta f}{\delta z} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \qquad \frac{\partial f}{\partial x}$$

Find the analytic function

$$w(z) = u(x, y) + iv(x, y)$$

(a) if
$$u(x, y) = x^3 - 3xy^2$$
,

(b) if
$$v(x, y) = e^{-y} \sin x$$

Two-dimensional irrotational fluid flow is conveniently described by a complex potential f(z) = u(x, v) + iv(x, y). We label the real part, u(x, y), the velocity potential, and the imaginary part, v(x, y), the stream function. The fluid velocity **V** is given by $\mathbf{V} = \nabla u$. If f(z) is analytic:

- (a) Show that $df/dz = V_x i V_y$.
- (b) Show that $\nabla \cdot \mathbf{V} = 0$ (no sources or sinks).
- (c) Show that $\nabla \times \mathbf{V} = 0$ (irrotational, nonturbulent flow).