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" SUPERPOSITION OF
SIMPLE HARMONIC OSCILLATIONS

1.1 4 Superposition of simple harmonic
motions -

If the same motion occurs repeatedly after a
definite interval of time, it is called periodic
motion. Simple harmonic motion is the simplest
kind of periodic motion.

x P

0
Fig. 1.1

‘When a particle P, Fig.1.1, has a simple
harmonic motion, we know that its distance (x) from
the mean position (O) at time ¢ is given by

x = g sin(wt? + d)

Here a is amplitude, wis angular frequency of
oscillation and & 'is initial phase (epoch) of the
motion. Initial phase means phase at f =0 (when
we start our observation or description). -

Now we like to study superposition of two or
more simple harmonic motions , i.e., we like to see
what happens when a particle has more than one
simple harmonic motion at the same time.

We know that when a particle has two
velocities, it moves with the resultant velocity, but
each component velocity produces its own effect.
Similarly, when a particle has two simple harmonic
motions at the same time, each produces its own

 effect. The resultant motion of the particle may
be of various types, depending upon the relation
between two superposed motions.

'Tlhe resultant motion can be determined by
using the principle of superposition. i

_ Principle of superposition : When two or more
simple harmonic motions superpose, the resultant

. displacement at any instant is the sum of individual

% 'Fllspi_at_:'em.cmg at that instant. If the displacements
- 8L.an instant owing to two simple harmonic

motions are x,andx,, then the resultant

displacement at that instant is given by
X=X F X, i, 1.1
It simply means that each individual motion
produces its own effect and the resultant motion
is the sum of the two motions.

1.1.1 Linearity and Principle of Superposition

Principle of superposition, eqn. 1.1, is a
consequence of the fact that the basic equation of
S.H.M. is a linear differential equation:

d’x _
dt?

It is a linear equation, because the dependent
variable x and its derivative have power 1.

It can be shown easily that if x, and x, are
two solutions of this equation, then any linear
combination of x and x, is also a solution. A
linear combination of x, and x, can be written
as

X =0K, FOX, usivuiinunirins 1518

where ¢, and ¢, are constants.

Differentiating both sides of eqn.1.1a, we get

d2x dle d2x2
dr? dr? #
Thus x is also solution of eqn.1.2. Eqn. 1.1 is a
special case of eqn.l.la. Hence the above

principle of superposition is a consequence of
linearity of the equation of S.H.M.

2

D X ceeererinnnreren 1.2

=€ +&p =— w(ex,tex,)= —0x

1.2 L Superposition of two collinear simple
harmonic osclllations '

Now we shall study the effects of the
superposition of two simple harmonic motions =
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- along the same line having d
 phases and frequencies.

ifferent amp]itudes,

(1) Superposition of two simple harmonic

motions having the same frequency and phase but |
' different amplitudes along the same line.

We suppose that two forces act on a particle

producing two simple harmonic motions along the _

X-axis. The two motions are represented by the

equations: :
x,=a sin(wr+5) and x,=a,sin(wt + d) 3
The two motions have the same frequency ®,
the same phase (of + 8) but different amplitudes
a, and a,. _
According to the principle of superposition, the
resultant displacement at any instant is given by
- x=x+x,=asin(w+d) + a,sin(w0)
see X = (@ Fa) SI(WE+B) .ospovvrsivuninnns 1.4
We see that the resultant vibration is simple
harmonic and has the frequency and phase
unchanged, but the amplitude is just the sum of
the individual amplitudes.
munnCammEREEE
Cay+ ap LT
ErABLL

e
1

ARAPRNRL RN

119
|

|

0 )T.L
""-'-'-..“I i I I 1
.
L
f

=EE

s L

3

/]

I
ant
]

Ty

EEREEER AN

HHHH
Same phase
: | Fig. 1.2
. In Fig. 1.2, you may see how the x- curve for
the resultant oscillation can be drawn by drawing
;;df:urves.fﬂr. t_he Superposing oscillations and
ing the individua] displacements. As the phases

» displacements at any

f_
I L7

-

._odd integral multiple of .
s x: o) a.ﬂ{ﬂ(@f *+8)and Jc'2 =g, Sin(or+84+m)

, z:.- {aill_- az) Sil'_l ((m + 6} :

ot = a2+ 200,008 8 .cujaiii

In Fig. 1.3, you may see how the x-t cury, i
the resultant oscillation can be drawn by drawingr
x-t curves for the superposing oscillations gng
subrracan_g one di.splacement from the other, 4
these are in opposite directions.

(?) Superposition of two simple harmoni;
motions having the same frequency but differen
phases and amplitudes along the same line.

Suppose the two oscillations are represented
by

x, = a, sin ot and x, = a, sin(wf + ).

Here & is the initial phase difference between
the two superposing oscillations.

According to the principle of superposition, the
resultant displacement at any instant is given by

x=x, +x,=asinwt + a, sin (of + )

= a sinwt + a, sin wf cosd + a, cos W sin

= (a, + a, cos 8)sinwt + a, sin & COS OF ....r- (1

We put (a,+a,cos 8§) = A cos€ and a,sin 6=

Asine............ (i1)

Then the above eqn. (i) becomes

x = Acos €sinwt + Asin € coswt = 4 sin(ot+€)

Hence the particle will oscillate with the sam¢

frequency o but with different amplitude A and
different initial phase €. To find the value of 4,
we square both sides of eqns. (i) and add. We g¢!

: A’(sin’e+ cos’€) = (al+a2c055)2 + (gzsinﬁ}’
IO (5.
Also we find from eqn.(ii) '

l azsina . ]6

tan e= EEAES
ay+a;cosd . - .

- We see that the amplitude and initial phase of
~ the resultant oscillation depend on individu?
- amplitudes a,and a, and their initial phas¢
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 GUPERPOSITION OF SIIMPLE HARMONIC OSCILLATIONS

_ | cases :
m_ The two oscillations have the same phase,
-, Initial phase difference, § = 0,
Resultant amplitude has the maximum value,
Amj. el + ﬂz.
* Initial phase of the resultant oscillation,
e= ().
This situation has been discussed above.
(b) The two oscillations have opposite phase.
-. Initial phase difference, €= n
Resultant amplitude has the minimum value,

Amm -~|¢1‘] ~da|.

Initial phase of the resultant oscillation,

e=0.

This situation has also been discussed above.
(c) The two oscillations have arbitrary phase

relation.

§ has any value other than 0 and .

In this case egns.1.5 and 1.6 arc the same
formula we get when two vectors are added
(tnangle rule).

Thus we get a very simple rule to add two
sinusoidal waves.

We regard the individual amplitudes (a,and a, )
as two vectors and the phase difference (8) as the
angle between them. Resultant amplitude (4) is

equal to the magnitude of the vector sum (a; +a, )

and €is the angle the vector makes with the first
vector a,, Figl 4,

€

e
l

e r-a, co8 &+

This is a very useful result and can be

- generalised for any number of simple harmonic
~motions of the same frequencies wpupoaed on

- €ach other. It js the polygon rule.Let us see it in
detail,

~ Suppose that there are four simple harmonic
, moticms :

Yy=a,sin (wt+8,), y, = a, sin (@f +3,),

Y=a sm(mr+b)andy4*a sin (ot + 8,).

- To ﬂdd them we consider four vectors d,d,, dy

and 4 which make angles 8,, 52,'5,' and 9,

3
respectively with positive X-axis and draw them
one after another as shown in Fig. 1.4a.

X

0

Fig. 1.4a

X and Y -components of the resultant vector A
are the algebraic sum of the corresponding
components of these four vectors. From the figure
it should be clear why algebraic sum is necessary.

A, =a,cosd, + a,cosd, + a,cosd, + a,cosd,
and/l =0 smﬁ + a, smﬁ +a,sind, + a smB

Rcsultant vcctor has lhe magmtude and
direction given by

Ay
Aﬁ\’Ax"“‘ix and tan & = AX
Therefore, resultant vibration is given by
y = Asin(wt + 0)

(4) Superposition of two simple harmonic
motions of slightly different frequencies but of the
same initial phase and amplitudes along the same
line.

Let the two superposing oscillations be given by

x, = asinw,f and x, = a sin @,¢

ThL dlﬂ'erence between angular frequencies o,
and @, is small.

Resultant oscillation is given by

x =x, +x,=alsino ! + sinw,]

((01 +l'l)2) ((D| —mz)
3 f COS 3 t

((01 ;mZ)t din (w0 ;mz] I ()

We see that x depends on the product of two
sinusoidal functions of time. One has a large frequency

(m|+(02)
2
and the other has a small frequcncy

(031 mz)
)

o

= 2a sin

=2acos

= ' (average frequency o{' ®, and ® )
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' o g ; o, and ©,
A - is smally because

other.-

= Asinw'? 'S8
p nt oscillation is found to

be written a5 ;
d its amplllude

sulta
Therefore the resu :
have the average frequency @ 1

(m’ _mZ)fz'za cos wf

A= 2acos——=—
Amplitude 4 of the resultant oscillation wl:r:e.:
cosinusoidally with time. Hence the resultan

oscillation is not simple harmoniC.
Now let us see how 4 vanes with time.

Let w = i ;{ﬂz :211("] 2"2)=2TUI, where
n, and n, are the frequencies of the superposing
vibrations and n is half of the difference of the
two frequencies. Amplitude 4 varies with
frequency n.

Maximum value of the amplitude is 4__=2a,
it occurs when

cos 0t =1, i.e., 2nnt = pm, where pisintegers

Minimum value of the amplitude is 4 = 0, it
occurs when 7

05 01 =0, ., 2mnt = (2p +1) L.
A Hen{;:e amplimlde varies periodically between
1% N;m 14, - This phenomenon is called bears,

aximum amplitude oceurs at time
=0.1.2°3,
2’2

Minimum amplitude oceyrg 5¢ time

Second, Produced in fjppe interva] |
- Number of b : n
= (n,. 3 ®als prodyceg in one sec
..NUm of “ ond is

'Ilatlioﬁ, eqn. (iii), can

Or, ( Y-b

A NAINE UGN U DEGREE P

HYs;

. Beat frequency =(n, - ny) = diﬁ"eren Cs
frequency of the two.superposing Osci”atioce
Beats is @ very important pheng ns,

Menon -
sound. The resultant sounds become peri, d?: ]:n
all

louder (waxing) and lower (waning), One way: y
and the next waning together are calleg one
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Fig. 1.5

In Fig. 1.5 we see the resultant pattern of
vibration C, when two vibrations A and B havip
frequency ratio 4/5 superpose. g

1.3 . Superposition of two simple harmong
motions of the same frequency hut along
two lines at night ange to each othey

(A) Analytical method

We suppose that a particle P has two simple
harmor}ic motions of the same frequency at the
same time, one along X-axis and the other along
Y-axis. We are to find the resultant motion,

We start with the general case when amplitudes
are different and the phase difference between
them is o,

‘ The two motions are represented by the
€quations:

X =a sin ot

Y =b sin (ot 2 ) PSRRI

®=phase difference between two oscillations.
The particle moves along a path for which the
Yand y coordinates of each point satisfy the above
two equationg sz‘multaneously. To find the locus

D’cf} o particle, we have to eliminate ¢ from the
above two equations.

Expan_din'g the second equation we get
Y = bsinwt cos ¢ +bcoswrsin ()

e Substituting the values of singr and cose from
¢ first eqn. we get

=h&x 2
b baCDS(p"’b\{l'-T—z—sin(p
a

L e 2
COS‘P) =bz[l—%}sin2(p
i

alx
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SUPERPOSITION OF SIIMPLE HARMONIC OSCILLATIONS 5

‘I

Or, i - ?.':-*—CU:.IIH 22 b’ =2 cos* @

2
= bisin’ p~h*~ -:smfp
2 3 3 ) 2!?“
Or, -"1:.*-""(5'“"‘{’+005“P)- . cos ¢+ y?
g = p? sin?
7 By =
- Or, ,-1.'____l¢_gsq;+m_=q|,n P . veaesinl 8
a ab b?

This is general equation of an ellipse enclosed
inscribed in a rectangle whose sides are 2a and
2b. The major axis of the ellipse makes angle a
with the X-axis given by

2ab
e

Therefore, in general, the particle P(x, )
moves along an elliprical path, Fig. 1.6. But
depending on the phase difference ¢and
amplitudes the path of the particle may be straight
line or circle as we shall see below.

tan2a=

Y
T : 5% /"3“20 A./
e
2b X
f /
(& AN B
2a
Fig. 1.6

Thus we find that the periodic motion of a
particle along an elliptical path may be regarded
as the result of superposition of two simple
harmonic motions of the same frequency at right
angle to each other.

Now we shall examine interesting special
cases,

- We shall see how the nature of the resultant

motion changes in a systematic manner as the

“phase difference and amplitudes takes different
values,

‘Case | : Phase difference between the
Superposing vibrations is 0 (same phase).

& P““il_lg =0, from eqn.(1.8) we find

oL

T QI ....................... 1.10

a .
It is equation of a strmght line passing through
the origin and having a slope

b
== = 1=
tan@ = m = tan "

Therefore the particle P(x,v) moves to and fro
along the straight line AC, which is the diagangl
of the rectangle, shown in Fig.1.7a. :

Y
D 9=0 A
P
r. H
¥
2b 0 x X
1
Cc B
2a
Fig. 1.70

Distance (r) of the particle P from the origin is
given by

rP=x? 4R

= (a*+ b*) sin’ ot

or, =1l q° 4 p° sin ot

Thus the vibration of the particle is simple
harmonic having the same frequency but

amplitude is [, 4 p* .
Case Il : Phase difference between the
BRI
superposing vibrations is 7 .

Putting 1p=% in eqns. 1.8 and 1.9, we get
equation of an ellipse, whose major axis makes
angle a with the X-axis given by

2{:15 1
2t -p2 2 ,
To find whether the particle moves clockwise

or anticlockwise, we have to look at the original
vibrations, egns. 1.7. Atr=0,x =0, y = b sin

tan2a=——"— ... o is positive,

awcosw! =+ve. Therefore x
coordinate of the particle increases from 0 as time
increases from 0. Hence the particle moves
clockwise along an ellipse, as shown in Figl.6.
Case | : Phase difference benvecn the

superpﬂsmg vibrations is <

q1-+ve and (::]:

2
Puumg Pp= 2 , we gt.l ﬁ‘om f:qns 1 8 and l 9:
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3’ AT a.’!‘: Lannrh )
g 1 *...—;I—-]'Jn

K ) revoly albngihe ellipse
‘ ‘.fo mcpaniélcP(.f,}fl rexol»:d o i
as shﬁwn in Fig.1.7b with a pen s

Y 1:0

o=

Fig. 1.7 .
The major and minor axes coincide with the X

and Y-axis respectively.
In this case x = a sinet, y = b cos @t
ﬂ = =
Atr=0,x=0,y=b. At1=5,% —-'a. y=0,as
shown in the figure, Therefore the particle rotates
clockwise.
Case IV : Phase difference between the

i : ]
superposing vibrations is 5 and amplitudes are

equal.
Putting a=b in eqn. 1.11, we get
S it - o TR D S I SR 1.12

In this case the ellipse becomes a circle. The
particle P(x, y) revolves clockwise along the circle
of radius a, Fig. 1.7c. Its time period is 7=2n / w,
o is the angular frequency. In this case we can
say that @ 1s the angular velocity of the particle.
D = j.'% 1 a5

€N
LN A

B

;-

T :  Fig. 1.7¢ -

i In lh.e abpvelhree cases (I1, 111, IV) the resultént -

: osgil]atmn 15 periodic, but nof .rimp?e harmonic
. Incase IV we get the relation between aunifon:n

. circular motion of radius ¢ ang constant angul

. velocity o with simple harmonic oscillation i

A T e ey P I i

g e

A uniform circular motion may be hy,
as the result of superposition of twg ¢
harmonic motions, of the same frequen

&

ghl of

‘mple

. . Y ang

amplitude but with a phase difference
angle to each other given by
x=asin o and y = a cos ot

Case V : Phase difference betweep the

. E 73 37t
superposing vibrations is 9=~

: 3n
Putting ¢="", we get from eqns. 1.8 ang 19

 equation of an ellipse and the angle u given by

2ab

tan 20, = —232_cos 3%

a“-b 4

S an_ £ s
Since cos "4~ == 0S4 = -Ve. " ais-ve, §o

major axis of the ellipse makes negative angle ¢
with the X-axis, as shown in Fig.1.7d. To fing
whether the particle moves clockwise or
anticlockwise, we look at the original vibrations,

eqns. 1.7.
Y
_in

=y

—

D

~

* \\" g \
X — P~
C | B
4 2a
Fig. 1.7d

: ' n
X =sinwt, y = b sin (W * %)

dx

Att=0 .r=.0, y=b sin% =RV, g = e

Therefore the particle rotates in clockwise
direction as shown in the figure.
Case VI : Phase difference between the
superposing vibrations is T (opposite phase).
Putting ¢ = r, we get from eqns. 1.8 and 1.9:

i a i .
It is an equation of a straight line passing
through the origin and having a slope
_ —tan@=m=—tan" b (Slope is negative)-
o o
Therefore the particle P(x,y) moves along th¢

- straight line BD, which is the other diagonal DB

of the rectangle, shown in Fig, 1.7¢, By the same
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! WN OF SIMPLE HARMONIC OSCILLATIONS

..'-ggb- as we had in case I, we can find thar the
le has the same kind of simple harmonic

-ﬂwg}nas incase L

S Y
[ ] \y i
o ;
N {
| S | \\1
% 0, X
Ll 5
| i
r | {
. 72 B -
C ! B
2a
Fig. 1.7e
Case VIl : Phase difference between the

e

superposing t*ibrarion.s is 9= =~

4 -
Putting ©= ==, we get from eqns. 1.8and 1.9,

we get 2n equation of an ellipse and the angle «
given by
Sn

azzfiz cos - == ve

So. major axis of the ellipse makes negative
angle o with the X-axis, as shown in Fig.1.7d.

To find whether the particle moves clockwise
or anticlockwise, look zt the original vibrations,
egns. 1.7.

x=sinot,y= bsin[t';" +

tan 2a =

5n
4
Atr=0x=0,y=58 sm—sj-‘- = —ve, ?”:— +ve.
Therefore the particle rotates in anticlockwise
direction opposite to what is shown in the figure.
Notice, the direction has changed.

Case VIll : Phase difference between the

3n
- superposing wbratroru is 9=5".

Puumgt:) 3z , we get fromeqns. 1.8and 1.9

~ So, the particle P(x, y) revolves along the
ellipse, whose major axis coincides with the

X-axlsas shuvm in Fig.1.7c witha period 7= “".

3n dx _
AH ﬁx 9), bsm(‘ﬂ”z) —bz +ve.

_r'._.-Therefore as time ¢ increases from (=0, x

mcreasm Tharefore, thc parucle rofates

7
anticlockwise opposite to what is shown in the
figure. The direction has changed.-

If o= % and the two amplitudes are equal

(a =b) the ellipse becomes circle, as discussed in
case IV. The particle rotates anticlockwise.
Case IX : Phase difference between the

superposing vibrations is ¢= 7T

Putting o= %T- .we get fromeqns. 1.8and 1.9,

we get an equation of an ellipse and the angle a
given by

2ab
tan 2a = ,a = ccs—h*+xe
b2 4

—_

So, major axis of the ellipse makes positive
angle a with the X-axis, as shown in Fig.1.6.

Atr=0,.r=0,y—bsm?T1— —Ve, ‘:,[ =4ve,
Therefore, as time ¢ increases from r=0, x
increases. Therefore, the particle rotates
anticlockwise opposite to what is shown in the
figure. The direction has changed.

Case X : Phase difference between the

superposing vibrations is @=2x (same phase)
This situation is identical with case 1. So the

particle will vibrate along the diagonal AC, as
shown in Fig.1.7a.

] n 27
6=0 4 2 4 T

4 n

Fig. 1.8

Now we summarise the above results in a
figure. In Fig.1.8 we can sce the changes in the
path along which the particle moves, as the phase
difference (@) between the two superposing
simple harmonic motions increases in steps of
n /4 from 0 to 2x. We have taken a = b. If the
phase difference increases further, the paltcm of
motion changes in the reverse order,

- (B) Graphical method W

The resultant osmilauon produced b.‘:’ :
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8
superposition of two simple harmonic oscillations
at right angle to each other can also be found by

graphical method. To apply this method we utilise
the basic facts: (i) when a particle moves with a
uniform angular velocity ® in a circle of radius a,
the foot of the perpendicular from the particle on
a diameter moves in a simple harmonic motion of
amplitude a and angular frequency . The circle
and particle are called the reference circle and
reference particle. (i1) if base and height of a right
angled triangle are two simultaneous displacements,
then the hypotenuse is the resultant displacement.

We shall now describe the graphical method
for two phase differences.

The two oscillations are represented by eqns.

x=asinwland y=b sin (ot +¢)
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