2.4 _d Different kinds of wave

In the discussions above we have assumed that
y is displacement of the particles of the medium
from their mean positions. This is true for
mechanical wave like that in a stretched string.
But there are different kinds of wave and
accordingly y may represent different physical
quantities. For example, to describe sound waves
the more convenient physical quantity is excess
pressure over normal pressure. In the region of
compression pressure is slightly above normal and
in the region of rarefaction pressure is slightly
below normal pressure. Hence for sound wave y
stands for excess pressure. For electromagnetic
waves what really propagate are varying electric
field and associated magnetic field. And for
electromagnetic waves there is no need for a
medium. Hence for electromagnetic wave y stands
for any component of these fields.

Hence for the sake of generalisation and
convenience we may choose the symbol y for y
and we call it wave function. Instead of giving a
particular name like displacement, electric field,
ext., we call y (x,?) as the disturbance at position
x and time ¢.

Thus harmonic wave proceeding along positive
X-axis 1s represented by the wave function :

v (x,f) = a cos k(ct — x)

Any arbitrary wave proceeding along positive

X-axis 1s represented by the wave function :
W (x,1) = flct — x)

Differential equation for a wave proceeding

along X-axis is
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25 - Propagation of a wave through three
Mmedia

(1) Transyerse

: wave through a stretched
Sfrmg .

We consider a thin perfectly flexible string
Stretched under tengjon T'and its length coinciding
Wwith the X-axis. If we pluck or strike the string at
a point Momentarily, a transverse wave would
Proceed along its length. Instantaneous position
of a very small portion AB of length Al of the
string is shown ip Fig.2.8. Let us consider the

dynamics of the situation and get the differential
€quation of the wave,

Y Tsin®,

6,
TWS 61 Al T
T by A B! Tcos 81

8, ?Tsin 6,

el o

x"‘_'—-——b

Ax

Fig. 2.8

As the string is perfectly flexible, tension will
be the same throughout the string and act
langentially at every point on AB. As displacement
y of A is very small, the angles 0,and 8, are very
small. The two components of T along X-axis at
A and B (Tcos{),and Tcos0,) are equal and
opposite, as there is no net force along X

-axis,
vibrations are along Y-axis,

The net force along Y-axis is
T'sin®, - TsinG, = T [tan@, — tan@, ]

{3),8),
(3, (@-3))

-

Here we have used the fact that when 0 is very
small,

. [}
sin O = tan 0 = slope = o

Displacement y
during vibration i

of y with x is & Sody= ¥

was dx. Th

£ mass per unit length of the string is , Magq

1SS ; .

Ifs nionAB 2 mAl = mAx, as Al !b\m}rslnan
* 0 - :

of thep 3y

ion is
n of the small portion isZ ¥ By

p )

Acceleratio cre

Newton's law :

-\1 ~2
ay .oy
T ["’ A =AY~

-

cl
-2
22 o1
&y _ I—(~—:—
or, —_>5 — m| v~
ot~

This is the differential eqyation of trafls"ﬂrse
wave through a stretched string. Companng this
with the egn. 2.3, we see that th‘e speeq of the
transverse wave in a stretched String 18 given b}-

ISR ¢ A 24
m

We see the velocity depends on properties of
the medium.

(2) Longitudinal wave through a soliy
medium :

We consider a thin bar situated along X-axis
through which a longitudinal wave is passing,
Different layers of the bar are vibrating with
different phases along X-axis. We consider two
planes A and B at distances x and x + §x from the
origin O, Fig. 2.9. Suppose at a particular instant
tthe two layers are at A’ and B, their displacements
from mean positions are yand y + dy respectively,

wly  ytdy

Al IA’B B’

o
e ———— X —
Rl te e 2P £ S
F oF
-~ F 4 aax
x X+ &x
Fig. 2.9

of a layer at 4 particular instant
S a function of x. Rate of change
3 ox.

- & r
distance between the two planes
€ new distance at the instant ¢ is &x + 4.

The origing]
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ay
- Ox,

Ox
Longitudinal strain produced in that portion

of the rod 18

- Change in the distance is dy =

dy_oy .25
ox  Ox

Forces developed in the two sides of the layer

between A and B are respectively Fand £+ %F—Eir
. 3 ‘x k]
as shown in the figure. The two opposite forces F

: . . 0y
and F produce the compressive strain i~ in
the layer and the unbalanced force %’—:m
. ox
produce the acceleration,

Let S be the area of cross-section of the layer.,
As § is assumed to be small, force is same
throughout the cross-section.

By Hooke's law: Young's modulus,

y= Stress ___F/S

strain ~ ¢v/éx

o F=-¥Y8Z ...(>0)

ox

If p 1s the density of solid, mass of the thin
portion is pSox.

2
Acceleration of the layer AB is ﬁr';
o]

= 32
By Newton’s law : —(,),—Fﬁx=pS&x-—2£
Substituting for F from eqn.(i) we get
&2y 5y
YS ; szpSBx*—%
cix ot
or 62y= Lﬁzy
* 52 P ox?

This is the differential equation of longitudinal
wave through an elastic solid. Comparing this with
the egn. 2.3, we see that the spced of the
longitudinal wave in an elastic solid is given by

------------------------

Comparison of transverse and longitudinal
wave :

Velocities of transverse and longitudinal waves
in solid are given by

¥
g= \/::; and ¢, = J%

We notice that tension 7Tin the string is playing
the role elastic modulus Y, providing the restoring
force necessary for vibration.

Again, mass per unit length, m = §1-p, S = arca
of cross-section of the string.

e bl
Lr Sp
For the string we can write, Young’s modulus,

Y= -—"—*gf , where / is increase in length because

of the tension T and L is original length.

We find that ¢, can be equal to ¢, if Y = 77, i.e.
I/ =1 . But to produce extension (/) equal to
original length (L), we have to apply a tension,
which far exceeds the elastic limit of the material;
the string breaks down. Therefore velocity of
longitudinal wave is much larger than velocity of
transverse wave.

(3) Velocity of a longitudinal wave through
an elastic fluid :

We consider a thin cylinder of an elastic fluid
(liquid or gas) situated along X-axis through which
a longitudinal wave is passing. Different layers
of the fluid are vibrating with different phases
along X-axis. We consider two planes A and B at
distances x and x + 3x from the origin O
respectively, Fig.2.10. Suppose at a particular
instant ¢ the two layers are at A'and B’, their
displacements from mean positions are y and y+dy
respectively. At a particular instant, displacement
y of a layer during vibration is a function of x.

y y+dy
-------- i‘_.! T
i P0+pm_——b§Ar E, '
PRSI s
R :

O
Fig. 2.10
J )

Rate of change of y with x is %J; sody= % ox

If S be the arca of cross-section of the cylinder,
initial volume of the layer AB of the fluid is S3x.
The initial distance between the two planes was
&x. The new distance at the instant 7 is 8x + dy.

. Change in volume of the layer is S8y .

. Volume strain produced in the layer is -
_ Soy_oy - |

€= 5o ox -
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Pressures e

veloped in the two sides of the
layer

between A and B are respectively p and
_1_' E:?J " Tl ’

P % 0%, as shown in the f; gure. The equilibrium

pressure

in the medium wag 1, when the wave 19
absent,

The two oppasite pressurcs p and p
constitute the stregg producing the strain in the
1 J 1 81} o e
ayer and the unbalanced force § 70X produce

X
the acceleration,

By Hooke's law: Bulk modulus,

R stressh_ P
strain

ox

If p is the density of fluid, mass of the thin
portion is pSéx.

. - y
Acceleration of the layer AB is P
/]
2
op . @Y
's law : §=—0x =~ pSHx —=-
By Newton’s law : § B P Y

Negative sign indicates that the acceleration
1S opposite to the X-axis.

Substituting from (i) we get,

a2 2
0 e O
SK'—*—'\ '; = [).SOJI—“'-'-"k _2}"
ox ot
2 2
Y_KOy
8t P ox?

This is the differential equation of longitudinal
wave through an elastic fluid. Comparing this with
the eqn. 2.3, we see that the speed of the
longitudinal wave in an elastic solid is given by

K

P
For a fluid we sce the bulk modulus comes into

play to produce rarefaction and compression of
the successive layers.

=

........................ 2.6a

For gasecous medium, the compressions and
rarcfactions take place in adiabatic condition, In
adiabatic condition in a perfect gas, we know pr
= constant, wherey=C / C,, C,and C are specific
heats of gas at constant pressure and Conslant
volume respectively.

,',dp- Y+ [}'YVT WdVe= (),

d["’f/ o ar...

LTV dviv .

o adiabatic bulk modulus of gaq g

WGi'%h ff'nr' 4 pAsEous meditm velge
Therefore f

itudinal wave 19
longitudinal wave i

« K (hull Miidy)

m
ﬁ,

i by f;'f

R

)/

? (‘e
(‘ = Shaet [RradpaRarifrasyy Ho
[

; P

‘The pressures fﬂf. ) ‘l*w"{'“l"fr’ﬂ‘: '-’i:-h!:.hyt!:f.,;i
of Fig.2.1010 produce I'Hff:fdf,‘lllfli y-”.r] ,, ’”:W-‘:-t-*.r.fm
in the layer arc in fact the prc;-,_-:‘u.r;,;:‘t, r; f.« O by,
the standard pressure (p,)n absence f 1’ .-'Afufzri Waye
As the sound wave mn':/crs'lhmugh air, lh::a (70
pressure () advances. This pressure (p) s ey o
the acoustic pressure, Hence sound Wav‘e ity b
considered cither as displacement wave of the Ly,
or as the pressure wave,

Displacement (y) of a layer at position 44
time ¢ is given by

y=asin(mnt - kx)

2 B Féy
Acoustic pressure, p = ~ K x

=Kkacos(umt ~kx)
= ¢ pkacos(nt - k)

= p sinl 0/ -—kx+1‘-)
pmsm( ! 5

We note that the phase of pressure wave [ plx )]
« T . X

18 % ahead of the displacement wave [ M(x,1)). That
means when displacement from equilibrium a
point is a maximum or a minimum, the excess
pressure there is zero; when the displacement ata
point is zero, the excess or deficiency of pressure
1S @ maximum,

The maximum variation of pressure from
cquilibrium or pressure amplitude is given by

P = c*pka = ‘-’ZP%‘?C«! = 2MCAPA.srarirsreririnid]

2.6 . Planp waye
We hat:v: Seen that a harmonic wave proceeding
""’"E‘ Positive X-axig ig represented by the wave
function
W08 = 4 cog(gy - - 3 RS 2.1
Here we know ¢ = %’-‘— and k = %’-‘- "
Now we j

magine that the above wave is passing
¢ dimensional mediym, The value 9
depend upon y and z coordinates ¢

through thye
W (Il){‘.ﬁ not

»
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any point in that three dimensional space. Hence the

hase (ot — kx) of the wave has the same value at
any instant at all points in any plane imagined parallel
1o the YZ-plane, Fig.2.11. Thus any plane parallel to
the YZ-plane is the locus of point having the same
phase of vibration. Such a plane is called wavefront.

Plane
Y wave
\# front
&
- .--]P (x{» 2)
1
X
0O —» ¥
I
y Il to YZ-planc
Fig. 2.11

Wavefront : A plane in the medium at every
point of which phase of vibration is the same is
called the wavefront of the wave.

Therefore the above equation 2.1 represents a
wave whose wavefronts are planes parallel to the
YZ-planes. In other words this equation represents
a plane wave. A plane wave has successive parallel
plane wavefronts. We notice that a plane wave
proceed in a particular direction and does not
spread in the lateral direction.

The above wave is proceeding along X-axis,

its direction is the unit vector i along X-axis. Now
we like to get the equation for a plane wave
proceeding along any arbitrary direction.

We choose a point P having position vector

F(x,y,z) on a particular wavefront, as shown in
the Fig.2.11. From the figure we can write

ot — fox = ot — kr cos® = ot — k7. i
Thus a plane wave proceeding along the
direction i is represented by
y(rt)=a Cos(wf*kF-f)

Therefore a plane wave proceeding along any
arbitrary direction k can be written as

w(}f,;)z a cgg(ﬂ)f-—k?.k’)

Now we construct a vector k whose magnitude
is k= 2n /3. and whose direction is the direction

of propagation k of the wave, i.¢., vector {E:k,lé X

A

Then we can write the equation of planc Wave

proceeding along k as
y(r.t)=a cos(mf - f:f) SO A .

This vector j is called the propagation vecior
of the wave; it is a characteristic of the wave. In

Fig.2.12, we can see such a plane wave.

Y ~
k

&«lee wave
front
/O '

VA

Fig. 2.12

2.7 _d Complex representation of a wave

Equation of a harmonic wave proceeding along
positive X-axis can be written as

(i) v (x.f) = a cos(wt — kx)

or (ii) v (x,7) = a sin(wf — AX)

We know Euler formula : ¢® = cos 0 + i sinf.
cos0 is the real part and sinf is the imaginary part
of e®.

Hence the above two wave equations can be
represented as a complex quantity :

The wave equation (i) is the real part of the
complex quantity y (x,r) and equation (ii) is the
imaginary part of the complex quantity. Such
representation is possible because in all algebraic
manipulations real and imaginary parts are not
mixed up; real parts and imaginary parts are added
separately.

The advantage of writing the wave equation
in this complex exponential form is that it easier
to differentiate, integrate sum as series than sine
and cosine functions. In particular we can separate
the spatial and temporal part of complex
representation as

v (x.0) = ae ™t ¢

This is not possible for sine and cosine
functions. ae ™ is called complex amplitude (4)
of the wave and e is called the harmonic time
factor. The intensity (/) of the wave can be found
from the complex amplitude. It is the product of
the amplitude and its complex conjugate :
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[= A4* = ae’™ x ae ™ = @".
N " wav se we
When large number of waves super¥§cn =
require integration over the sgatm! part. e
calculation of the resultant dlst},lrbance - ecs e
very simple with the exponential I..l-lncllOI.'t ;13 i1
shall see this when we shall study diffractio
light waves. >
It should be clearly understood, however, tha

all physical quantities must be real. Once we get |

the final result we have to find either the real pi:ll’l
or imaginary part of it to get the physical quantity
of interest.

Similarly complex representation of the plane
wave proceeding along the propagation vector £ 1s
i(r-k 7
y(F.r)= ae( i i 2.10

2.8 _d Energy density of a wave

When wave passes through a medium energy
is transmitted from one region to another. Hence
there is energy distributed over the space occupied
by the wave motion. We shall now calculate this

energy contained per unit volume of the medium,
which is called energy density.

For this purpose we consider a longitudinal
wave passing through an elastic solid as discussed
above. We consider a thin layer of small volume
SV of the medium at distance x from the origin.

The displacement of the layer at time ¢ s given by
the wave equation.

~. Displacement, y = g cos(ot — kx)

Velocity, v = %};— = —aosin(w! - k)

If p is density of the medium, mass of the
portion is p§ V.

~ Kinetic energy of this layer,

]
OF, = 7PV = %p-& Va*osind(wf ~ kx)

*+ Kinetic energy per unit volume

U= '!Z“pazmzsin’-(mt — kx)

I

1
7 PA(27n)? sin? (ayt — kx)
=21 pn’a? sin? (ayf — Yo i, 21

Potcntml' energy in the layer is the Strain en
producs:d In 1t as result of compressio
rarefaction, Strain CNergy per unit volume ig

ergy
n or

“stmin . "L A blram‘- ﬁ

From eqn.2.5, we can say that g “ai,j pr

in the medium is % From Hookers !aw;

i : e

write, stress = ¥ X strain. Using these o °\

we get the potentlal ENergy per upjt ‘-’Dlumr%
R

Potential energy per unit volume, -
1 @i] [QJZJ_ e
u,= 2}{63: | &x 2}’5;

We know velocity of the wave, . . J? :
p

X
.@:aksin(mt— kx) .
ox

R ST P T AP o
S, = 2pca&sm(mr kx) .

i 2m\?
=R B (-Tn) sin*(wr- kx)
= 2wpria® sin(ot - kx)...... 34y
Therefore total energy density, _
u=u,+u =4w’pn’a’ sin® (ot- kr)

A |
From eqns. 2.11, 2.12 and 2.13 we can g,
the following observations: {0

(i) Kinetic and potential cnergy densities g,
equal in magnitude at all instants of time andz
in phase with other. That means both reach
maximum value and zero value af the same tin;

Thus energy of a wave is equally divided betwey
kinetic and potential forms b

The situation is different from simple hamwmr
vibration, where as potential energy decrezss

kinetic energy increases and vice versa, And o
energy is constant, ;

(if) Total energy density has different vahe.
at different points at a particular instant.

distribution energy at different points 5’”_
particular instant is shown in Fig.2.13. .

HU\:/\*/ .

Fig. 2.13 : laf
L ' : * |l
.Sllmlal‘l}', total energy density at a Pan;;.:d
point also varies with time as the same sa¥

A CNoina fo _at 6
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We know the average value of a square of a
sinc or cosine function over a time or space period
is onc-half.

. Average energy density is

u =2npret ......2.14

We sce that average energy density is
proportional to density of the medium p, the st{uare
of the frequency 1, and square of the amplitude a.

(iii) We can write

u=2m'pn’a’ [1 - cos 2(mt - kx)]

From this equation we can say that energy
density propagates like a wave. The angular
frequency is of this wave is 2w, wavelength is
2/2, but its velocity is equal to that of displacement
wave.

(iv) We see that energy density is proportional

to density of the medium and to squares of
frequency and amplitude.

All the above results also hold for transverse
wave.

2.9 _d Intensity of a harmonic wave

When wave passes through a medium, energy
transferred from one region to another region in
the form of wave. Now we like to find the rate at

which energy is transported by a wave. It is
measured by intensity.

Intensity of a wave (I): Intensity of a wave at
a point is the amount of average energy passing
normally through unit area about that point.

We imagine a unit area A, about the point P
oriented at right angle to an incoming plane wave,

me—

£ >
C
—
T 1% Q
——
A
A c

Fig. 2.14

Y

Fig.2.14. If velocity of the wave is c, then the
wavefront that strikes the area A, atthe first instant
of a second will arrive the surface A, at the last
instant of the second. Hence all the energy that
has crossed the surface A, in one second is
contained in the cylinder of unit base and length
c. Its volume is c.

-, | = average energy density ¥ ¢

lanin® ¥ o= 27ioncat 215
=2nlpmras X ¢ = LD -

We sec the different factors intensity of plane
wave depends upon. In most situations, p. # .-m(-i c
remain unchanged and so we can say thatintensity
is proportional to the square of amplitude.

S

In the case of sound waves in air, we can
express intensity in terms of pressure amplitude
(p_): We have p_= 2mcnpa. Substituting value of
amplitude (a), we get

Intensity. / = 2z pnica

2.10 _d Three dimensional wave

So far we have considered a plane wave which
proceeds in a particular direction without
spreading laterally. For a wave preceding along
X-axis the corresponding wave function y(x,r)
satisfies the wave equation :

b 2
coy .. coy
o/

The solution is of the form :

~ 2
X

W(x,t) = a cos (ot - kx).

Now we consider waves which spread in all
directions in the three dimensional space. For
example, sound waves, light waves, etc.

We suppose that the medium is homogeneous
and isotropic. Therefore there is nothing to
distinguish one Cartesian coordinate from the
other two. Hence all the coordinates (x, v, z) should
occur symmetrically in wave equation. We can,
therefore, easily generalise the above equation and

get the differential equation for a wave proceeding
in all directions as given by

2

- - ~2
8 c cy ¢
-‘ ‘:l;’.!_ q‘f-*. E’:-%E——u T ..-2.16
o o & o? &l '
~2 '
Inacompactnotation?zq;:l—f’ ‘;" oo 2,168
¢~ ot°

Itssolution s given by y(7,¢) =acos(wr - F F)

We notice the same eqn. 2.8 represents a plane
wave. The difference is that for the plane wave
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the Propagation vector £ has the same direction
atall points (X, v, 2), but for a wave proceeding in

all directions £ has different directions at different
peints,

2.10.1 Spherical wave

Now we shall study a very important kind of
wave in the three dimensional space.

Fig. 2.15

We imagine a point source O producing a wave
which spreads in all directions. Fig.2.15. If the
medium is homogeneous and isotropic, the
velocity of the wave has the same value
everywhere and in every direction. Hence the
disturbance produced at O at time 7 = 0 will arrive
at each point of the surface of the sphere S of
radius = cr at time ¢ = 1. Since the waves have
traversed equal distance and taken equal time, the
waves arrive with the same phase. Therefore the
surface of the sphere is locus of points having the
same phase of vibration, By definition the surface
of the sphere is the spherical wavefront of the
wave. Ata later time t + ¢/, the sphere S’ of radius
r=c(t + r')is the wavefront.

Let us first see how intensity of the wave
changes with distance r from the source O
Suppose that the source emits energy E persecond.
Then E amount of energy will pass through the
surface of the sphere per second. This energy is
passing normally (radially) through the surface of
total area 4 = 4nr?, Therefore amount of energy
passing normally through unit area per unit time,
i.e., intensity is given by

fl B

. 1
3 ot 00 %

A 4 r
Intensity at a point varies inversely as the

L I}I'CS

distance from the source. Thig Tés 1
is quite (:xpcclcd.‘bcfmfsc thclencrg}, is S?"’adin; |
over bigger and bigger arcas. in m’f“’“f"'_’ﬁtem- 2
of a plane wave does not c'hange with dmﬂme a;
it does not spread [aterall;... | _

Now we shall find the dlfﬁ.:rcmm] equaty
wave and its solution.

square ﬂ'flh{.'

s e

on of

e i s o

a spherical
For spherical wave more Convenjg,,
coordinates is spherical polar coordinates (r. D)

than the rectangular coordinates (x,y,z), Fig-l{ﬁ'
Z ]

Fin e e pars el

A ——

Fig. 2.16

as there is spherical symmetry. As a result the Waye
function y should not depend on the angles § g4
¢. We have

w(:’.:}=w(r.B.:p,r)=l|J(r,r}
Let us see how wave equation becomes simpler
with the above condition.

rr=xitpiez? -9 5_":2, QL’:E_
s rﬁr ® ox r
N _Nar_xdy
dv drox ror
2 - .
IV _o(v)_o(xow) a(xdw)x
x> ox\ox ) ox\ror = ar\rorla
=|lev 1 ov oy |
rx or !'2 or r arz r
-2
=x 0y 13w 2oy
ol ror p3 or ]

Th.e similar relations hold for the y and?
coordinates,

B8 |

Substituting all these in eqn.2.16, we get

2 y) i
X° 4 2 2
-——-}—;_Ji_‘?__ia_ﬂ’_+_3'_6w x?+y2+z.§;§
o or?  r or 3 e
Y

2
=
C

3
w
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yesa s ¥ T
'y, 20y _ 10y
ae ror o o
Multiplying both sides by » we get the equation
of a spherical wave as

or.

-

2 \ 2
oy, =,._1?ﬁ_§{..._.. ...... (i)
are o et o

9 2
2y r2)= 1EY 00
Now v (ry) :’Jr-(m r =2t 25

and r does not depend on time.

Hence the above eqn.(i) can be written as
3 2
o
It is equation of one-dimensional wave
equation and its general solution is
ry(nt) = f(et - r)+ glet +r)
- Wave function 1s

W = Lt -n+ gt n

The first term in right hand side of the above
equation represents the spherical wave spreading
' radially outward from the source at the centre. The
- second term represents the spherical wave
converging toward the centre.

For a harmonic spherical wave corresponding
 to the first term is given by

y(nt) = %cos (ot - kr)

We see that the amplitude of the spherical wave
' decreases inversely with 7, which is the distance
from the source. As intensity is proportional to
- square of the amplitude, intensity falls offas 1/ 77,
the same result we get earlier on physical
considerations.

2.10.2 Cylindrical wave

For a point source or very small source of light
we get spherical wave. If the point source is at a
very large distance or at the focus of a convex
lens we get a plane wavefront. But if there is line
source placed behind a thin slit we shall get a
cylindrical wavefront with its axis coinciding with
the line source. If a plane wavefront strikes a slit
from behind the wavefront emerging on the other
side is cylindrical. Though in many experiments
we find such cylindrical wavefronts, we shall not

waves,
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discuss about such waves, we treat these as plane
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