
 

 

PHY-H-CC-T-03: ELECTRICY AND MAGNETISM 

LECTURE-3 (Pabitra Halder (PH), Department of Physics, Berhampore Girls’ College) 

Ampere’s circuital theorem: 

Statement: The amount of work done in carrying a unit positive magnetic pole once around an 

electrical circuit (where a current I flows) is equal to the product of current (I) and the permeability of 

free space( µ0). 

It may be again stated as, the line integral of magnetic induction (�⃗� ) over any closed path round a 

closed electric circuit carrying a current of I is equal to the product of  µ0 and I.  

If �⃗�  be the magnetic induction at any elementary line element 𝑑𝑙⃗⃗  ⃗ of the closed loop L. 

∮ �⃗�  . 𝑑𝑙⃗⃗  ⃗ = ∬(∇ ⃗⃗  ⃗  × �⃗�  ). 𝑑𝑠⃗⃗⃗⃗   →From Stoke’s theorem. 

Where S is the area enclosed by L. 

∮ �⃗�  . 𝑑𝑙⃗⃗  ⃗ = ∬ µ0 𝐽  . 𝑑𝑠⃗⃗⃗⃗  =  µ0  ∬𝐽  . 𝑑𝑠⃗⃗⃗⃗   

 ∮ �⃗�  . 𝑑𝑙⃗⃗  ⃗ =  µ0 I 

Hence, Ampere’s circuital theorem is established. 

Application: 

1. Magnetic field due to a long Solenoid of length L and number of turns N. 

  

 

 

 

 

 

 

 

 

 

We take the solenoid to be closely wound so that each turn can be considered to be circular. We can 

prove that the field due to such a solenoid is entirely confined to its interior, i.e. the field outside is 

zero. 

 

 

 

 
Fig.1 Long Solenoid 

Fig. 2 Cross-section of Solenoid 



 

 

Outside the Solenoid:  

To see this consider a rectangular amperian loop ABCD parallel to the axis of the solenoid. 

Field everywhere on BC is constant and is B(d1) . Likewise the field everywhere on DA is (d2) . By 

Righthand rule, the field on DA is directed along the loop while that on BC is oppositely directed. On 

the sides AB and CD, the magnetic field direction is perpendicular to the length element and hence is 

zero everywhere on these two sides. Thus 

∮ �⃗�  . 𝑑𝑙⃗⃗  ⃗ = l[𝐵(𝑑2) − 𝐵(𝑑1)] 

By Ampere's law, the value of the integral is zero as no current is enclosed by the loop. 

Thus, 𝐵(𝑑2) = 𝐵(𝑑1). The field outside the solenoid is, therefore, independent of the distance from 

the axis of the solenoid. However, from physical point of view, we expect the field to vanish at large 

distances. Thus, 𝐵(𝑑2) = 𝐵(𝑑1) = 0. 

Inside the Solenoid: 

To find the field inside, take an amperian loop abcd with its length parallel to the axis as before, but 

with one of the sides inside the solenoid while the other is outside. The only contribution to ∮ �⃗�  . 𝑑𝑙⃗⃗  ⃗  

come from the side (da) is 

∮ �⃗�  . 𝑑𝑙⃗⃗  ⃗ = Bl= µ0 𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = µ0nIl 

Where, I is the current through each turn and ‘n’ is number of turns per unit length. 𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = nIl 

because the number of turns threading the loop is nl.  

Hence, B = µ0nI            → independent of the distance from the axis. 

Special case: 

It can be shown that the magnetic field at the end of a long solenoid will be 

B = 
1

2
 µ0nI. 

2. Magnetic field due to a toroid: 

 

 

 

 

 

 

 

 

 

 



 

 

 

The configuration in which we have closely spaced windings of a wire wound around a ring is called 

a toroid. Let a current I flow through the windings. 

Inside the toroid: 

 Consider a circular path c1 inside the ring and concentric with it. The symmetry shows that the 

magnetic field is constant everywhere along the path c1 and tangential to it. If the current direction is 

as shown in figure, the direction of the line of constant B is clock-wise. The total current enclosed by 

the path c1 is NI, where N is the total number of turns on the toroid. Ampere’s circuital law for the 

path c1 gives  

∮ �⃗�  . 𝑑𝑙⃗⃗  ⃗ = µ0NI → B (2πr) = µ0NI, where r is the radius of the circular path c1. Thus 

B= 
µ0N𝐼

2𝜋𝑟
  ∙∙∙∙∙∙∙∙ (1) 

If the thickness of the toroid is much less than its mean radius R, then r ≈ 𝑅 and equation (1) gives the 

field everywhere inside the toroid. As N/2πR=n gives the number of turns per unit length of the 

toroid, we can write, 

B = µ0nI 

Outside the toroid: 

Considering the circular path c2 we get from Ampere’s circuital law 

∮ �⃗�  . 𝑑𝑙⃗⃗  ⃗ = µ0N×0 → B=0, as the net current enclosed by the path c2 is zero. 

             

Limitation: 

Ampere's law is always true, but is only a useful tool to evaluate the magnetic field if the symmetry of 

the system enables you to pull outside the line integral. The configurations that can be handled by 

Ampere's law are:  1. Infinite straight lines, 2. Infinite planes, 3. Infinite solenoids, 4. Toroids. 

Biot-Savart Law: 

If the magnetic induction at a point due to a line element 𝑑𝑙⃗⃗  ⃗ of a conductor carrying a current I ampere 

be given by d�⃗� , the law states that 

i) |d�⃗� | ∝ I, ii) |d�⃗� | ∝ dl, iii) |d�⃗� | ∝ sin𝛼 and iv) |d�⃗� | ∝ 
1

𝑟2  

Vectorically, d�⃗�  =
 µ0

4𝜋
 
𝐼 𝑑𝑙⃗⃗⃗⃗ ×𝑟 

𝑟3 , where  µ0 is the permeability of free space. 

The magnetic induction d�⃗�  is perpendicular to the plane containing  

the line element 𝑑𝑙⃗⃗  ⃗ and the position vector �⃗⃗� . 

In absence or presence of a magnetic material the magnetic induction 
 



 

 

 at a point 𝑟  due to a closed conductor is given by 

�⃗�  = 
 µ0

4𝜋
 ∮

𝐼 𝑑𝑙⃗⃗⃗⃗ ×𝑟 

𝑟3   

 

Applications of Biot-savart Law: 

1. Magnetic field due to the current flowing through a straight wire of finite length: 

Let XY be a straight-line conductor  carrying a current of I amp and P be  

a point at a distance D from XY. The magnetic induction �⃗�  at P is required. 

From Biot-Savart law, the magnetic induction at P due to element dl0 of the 

wire is 

dB= 
 µ0

4𝜋
 
𝐼 𝑑𝑙 sin(

𝜋

2
+𝜃)

𝑙2
 = 

 µ0

4𝜋
 
𝐼 𝑑𝑙 cos𝜃

𝑙2
  

Where l is the length of the radius vector of the point P from dl, 

Now dl= D 𝑠𝑒𝑐2𝜃 dθ, also l= D sec θ 

dB = 
 µ0𝐼

4𝜋𝐷
 cos 𝜃 dθ  

Therefore, the total magnetic induction due to the entire wire is 

B = 
 µ0𝐼

4𝜋𝐷
 ∫ cos 𝜃  dθ

θ2

−θ1
 = 

 µ0𝐼

4𝜋𝐷
 (sin θ1 + sinθ2 ) wb/m2. 

The direction of �⃗�  is perpendicular to the plane of the paper and into it. 

Special case: 

For an infinite wire θ1=θ2=
𝜋

2
 

|�⃗� | = 
 µ0𝐼

2𝜋𝐷
. 

2. Magnetic field at a point on the axis of a circular conductor carrying a current: 

Let us consider a circular conductor carrying a current I. Now the magnetic 

 Field at a point P along the axis of the loop at a distance z is to be 

determined. 

Consider an element dl0 on the loop. From Biot-Savart law the magnetic  

field at a point P due to the element 𝑑𝑙0⃗⃗⃗⃗ ⃗⃗  is 

d�⃗�  = 
 µ0

4𝜋
 
𝐼 𝑑𝑙0⃗⃗⃗⃗⃗⃗  ⃗ ×𝑙 

𝑙3
 , where  µ0 is the permeability of free space.  

 

 



 

 

Where  l is the distance of the point P from element dl0 on the loop. Since, the angle 

Between 𝑑𝑙0⃗⃗⃗⃗ ⃗⃗  and 𝑙  is 
𝜋

2
, we have  

d�⃗�  = 
 µ0𝐼

4𝜋
 
𝑑𝑙0

𝑙2
 along PT 

Because of symmetry, when entire loop is considered, the component perpendicular to the axis cancel 

out and only components along the axis contribute. 

Now, PV= PT sin< 𝐻𝑃𝑇 = PT (a/l), a is the radius of the loop. Hence the component of d�⃗�  along the 

loop axis is 

(d�⃗� )axis = 
 µ0𝐼

4𝜋
 
𝑑𝑙0

𝑙2
(a/l) = 

 µ0𝐼𝑎

4𝜋𝑙3
 dl0  

The magnetic field due to the entire loop is 

(�⃗� )axis= 
 µ0𝐼𝑎

4𝜋𝑙3
 ∫𝑑𝑙0 = 

 µ0𝐼𝑎

4𝜋𝑙3
 (2𝜋𝑎)= 

 µ0𝐼𝑎
2

2𝑙3
 = 

 µ0𝐼𝑎
2

2(𝑎2+𝑧2)3/2  

If coil has N number of closely wound turns, then the magnetic field 

(�⃗� )axis = 
 µ0𝑁𝐼𝑎2

2(𝑎2+𝑧2)3/2 ∙∙∙∙∙∙∙∙∙∙∙∙∙(1) 

Special case: 

The field at the centre of the loop is obtain by putting z=0 in equation (1). The field is 

(�⃗� )centre= 
 µ0𝐼

2𝑎
 . 

Problems: 

1. Find the magnetic field at a point P for each of the steady current configurations shown in 

figure below.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1 
Fig.2 



 

 

First Case: 

The straight segments produced no field at P. We know that the magnetic field at the centre of circular 

loop of radius a carrying a current I is (�⃗� )centre= 
 µ0𝐼

2𝑎
 . 

Here, P is the centre of two concentric quarter-circles of radius ‘a’ and ‘b’ respectively. Then the 

magnetic field at P due to the quarter-circle of radius ‘a’ is 

𝐵1
⃗⃗⃗⃗  = 

1

4
×

 µ0𝐼

2𝑎
 → outward normal to the page. 

Similarly, the magnetic field at P due to the quarter-circle of radius ‘b’ is 

𝐵2
⃗⃗ ⃗⃗  = 

1

4
×

 µ0𝐼

2𝑏
 → Inward normal to the page. 

Since, b>a then the magnetic field at P due to the entire current configuration is 

(�⃗� )P = 𝐵1
⃗⃗⃗⃗  - 𝐵2

⃗⃗ ⃗⃗  = 
 µ0𝐼

8
 (

1

𝑎
 - 

1

𝑏
 ) → outward normal to the page.  

Second Case: 

The magnetic field at P due to the two half-lines are the same as one infinite line 

𝐵1
⃗⃗⃗⃗  = 

µ0𝐼

2𝜋𝑅
 → Inward normal to the page.  

The magnetic field at P due to the half-circle of radius R is 

𝐵2
⃗⃗ ⃗⃗  = 

1

2
×

 µ0𝐼

2𝑅
 → Inward normal to the page. 

The total magnetic field at P due to entire current configuration is 

(�⃗� )P = 𝐵1
⃗⃗⃗⃗  + 𝐵2

⃗⃗ ⃗⃗  = 
µ0𝐼

4𝑅
 (1 + 

2

𝜋
 ) → Inward normal to the page.  

2. (a) Find the magnetic field at the centre of a square loop, which  

carries a steady current I. Let R be the distance from centre to side. 

(b) Find the field at the centre of a regular n-sided polygon,  

carrying a steady current I. Again, let R be the distance from centre 

 to any side. 

(c) Check that your formula reduced to the field at the centre of a circular loop, in the limit 

n→∞. 

Ans. (a) The magnetic field at P due to the finite straight I amount current  

carrying wire be �⃗�  = 
 µ0𝐼

4𝜋𝐷
 (sinθ1 + sinθ2 ) → Inward normal to the page.  

Here, D=R and θ2= - θ1 = 450 

The magnetic field at the centre of square loop due to the one arm is 

 

 



 

 

𝐵1
⃗⃗⃗⃗  = 

 µ0𝐼

4𝜋𝑅
 (sin45 +sin45) = 

 µ0𝐼

4𝜋𝑅
 √2 → outward normal to the page.  

The magnetic field at the centre of square loop is 

�⃗�  = 4× 𝐵1
⃗⃗⃗⃗  = 

 µ0𝐼

𝜋𝑅
 √2 → outward normal to the page.  

(b) Here, D=R and θ2= - θ1 = 
𝜋

𝑛
 for n-sided polygon 

The total magnetic field at the centre of a n-sided polygon is 

�⃗�  = n×
 µ0𝐼

4𝜋𝑅
 (sin

𝜋

𝑛
 +sin

π

𝑛
 ) = 

 µ0𝑛 𝐼

2𝜋𝑅
 sin

𝜋

𝑛
  → outward normal to the page.  

(c) As n→∞, θ will be very small. So, sinθ ≈  𝜃. 

Then the magnetic field at the centre of a n-sided polygon as n→∞ is 

 �⃗�  = 
 µ0𝑛 𝐼

2𝜋𝑅
 × 

𝜋

𝑛
 = 

 µ0 𝐼

2𝑅
 → magnetic field at the centre of a circular loop of radius R carrying a current I. 

3. (a) Find the force on a square loop placed as shown in fig.1, near an infinite straight wire. 

Both the loop and wire carry a steady current I. 

(b) Find the force on a triangular loop placed as shown in fig.2, near an infinite straight wire. 

Both the loop and wire carry a steady current I. 

 

 

 

 

 

 

Ans.(a) The forces on two sides of square loop, normal to the infinite current carrying wire cancel. 

The force on the bottom side of the square loop is 

𝐹1
⃗⃗  ⃗ = I (𝑙  × �⃗� ) = (

µ0𝐼

2𝜋𝑠
) ×Ia = 

µ0𝐼
2𝑎

2𝜋𝑠
 → upward ( magnetic field due to the infinite straight wire �⃗� = 

µ0𝐼

2𝜋𝑠
 ). 

Similarly, the force on the top side of the square loop is 

𝐹2
⃗⃗⃗⃗  = 

µ0𝐼
2𝑎

2𝜋(𝑠+𝑎)
 → downward (magnetic field due to the infinite straight wire �⃗� = 

µ0𝐼

2𝜋𝑠
 ). 

Therefore, the net force on the square loop due to the infinite straight wire carrying a current I is 

𝐹  = 𝐹1
⃗⃗  ⃗ - 𝐹2

⃗⃗⃗⃗  = 
µ0𝐼

2𝑎

2𝜋𝑠
 - 

µ0𝐼
2𝑎

2𝜋(𝑠+𝑎)
 = 

µ0𝐼
2𝑎2

2𝜋𝑠(𝑠+𝑎)
 → upward. 

 

 
 

Fig.1 Fig.2 



 

 

(b) The force on the bottom side of the triangular loop is 

𝐹1
⃗⃗  ⃗= 

µ0𝐼
2𝑎

2𝜋𝑠
 → upward (magnetic field due to the infinite straight  

wire �⃗� = 
µ0𝐼

2𝜋𝑠
 ). 

On the left side, the magnetic field �⃗�  = 
µ0𝐼

2𝜋𝑦
 �̂�; 

The elementary magnetic force on the left side of the triangular loop is 

d𝐹  = I (𝑑𝑙⃗⃗ ⃗⃗  ⃗ × �⃗� ) = I (dx 𝑥 + dy �̂� + dz �̂�) × 
µ0𝐼

2𝜋𝑦
 �̂� = 

µ0𝐼
2

2𝜋𝑦
 (- dx �̂� + dy 𝑥)  

But the x-component cancels the corresponding term from the right side and Fy= - 
µ0𝐼

2

2𝜋
 ∫             

1

𝑦
 𝑑𝑦𝑠

√3

 

Here y= √3 x, so Fy= - 
µ0𝐼

2

2√3π 
 ln(

𝑠

√3
+𝑎/2

𝑠/√3
) = - 

µ0𝐼
2

2√3π 
 ln(1 +

√3𝑎

2𝑠
)  

Similarly, the force on the right side of the triangle is the same as left side, so the net force on the 

triangle is  

𝐹  = 
µ0𝐼

2

2𝜋
 [

𝑎

𝑠
− 

2

√3
 ln(1 +

√3𝑎

2𝑠
)] → upward. 

Exercise: 

1. A hollow cylindrical conductor of infinite length carries uniformly distributed current I from a<

𝑟 < 𝑏. Determine the magnetic field for all r. 

 

2. A long wire of cross-sectional radius R carries a current I. 

The current density varies as the square of the distance from the 

axis of the wire. Find the magnetic field for r<R and for r>R.  

 

 

𝑠

√3
+

𝑎
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