PHY-H-CC-T-03: ELECTRICY AND MAGNETISM
LECTURE-3 (Pabitra Halder (PH), Department of Physics, Berhampore Girls’ College)

Ampere’s circuital theorem:

Statement: The amount of work done in carrying a unit positive magnetic pole once around an
electrical circuit (where a current | flows) is equal to the product of current (I) and the permeability of
free space( pp).

It may be again stated as, the line integral of magnetic induction (§) over any closed path round a
closed electric circuit carrying a current of | is equal to the product of p, and I.

If B be the magnetic induction at any elementary line element di of the closed loop L.

$

Where S is the area enclosed by L.

— — —

di=[f(V x B

). ds —From Stoke’s theorem.
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Ho

$B.dl=[f noj.ds=po [[].ds !
¢§EI)= |J.0|

Hence, Ampere’s circuital theorem is established.

Application:

1. Magnetic field due to a long Solenoid of length L and number of turns N.

b I C

PRIIIICDRIR

\[ m B a d
LI © \ .
L L 5

@@@@@%@@@@

Fig.1 Long Solenoid Al D

Fig. 2 Cross-section of Solenoid

We take the solenoid to be closely wound so that each turn can be considered to be circular. We can
prove that the field due to such a solenoid is entirely confined to its interior, i.e. the field outside is
zero.



Outside the Solenoid:

To see this consider a rectangular amperian loop ABCD parallel to the axis of the solenoid.

Field everywhere on BC is constant and is B(d1) . Likewise the field everywhere on DA is (d2) . By
Righthand rule, the field on DA is directed along the loop while that on BC is oppositely directed. On
the sides AB and CD, the magnetic field direction is perpendicular to the length element and hence is
zero everywhere on these two sides. Thus

—

¢ B . dl = I[B(d2) — B(d1)]
By Ampere's law, the value of the integral is zero as no current is enclosed by the loop.

Thus, B(d2) = B(d1). The field outside the solenoid is, therefore, independent of the distance from
the axis of the solenoid. However, from physical point of view, we expect the field to vanish at large
distances. Thus, B(d2) = B(d1) = 0.

Inside the Solenoid:

To find the field inside, take an amperian loop abcd with its length parallel to the axis as\before, but

with one of the sides inside the solenoid while the other is outside. Thexonly contribution to ¢ B . di
come from the side (da) is

$ B . dl = BI= 1o Lenciosea = Honll

Where, | is the current through each turn and ‘n’4is numberof turns per unit length. I.;,,c10seq = NI
because the number of turns threading the loop is nl.

Hence, B = pynl — independent of the distance from the axis.

Special case:

It can be'shown that the magnetic field at thesend of a long solenoid will be

1

2. Magnetic field due to a toroid:




The configuration in which we have closely spaced windings of a wire wound around a ring is called
a toroid. Let a current | flow through the windings.

Inside the toroid:

Consider a circular path cl inside the ring and concentric with it. The symmetry shows that the
magnetic field is constant everywhere along the path c1 and tangential to it. If the current direction is
as shown in figure, the direction of the line of constant B is clock-wise. The total current enclosed by
the path c1 is NI, where N is the total number of turns on the toroid. Ampere’s circuital law for the
path c1 gives

gﬁE di= NI — B (2xr) = uoNI, where r is the radius of the‘circularpath c1. Thus

If the thickness of the toroid is much less than its mean radius R, then r = R and equation (1) gives the
field everywhere inside the toroid. As N/2aR=n gives the number of turns per unit length of the
toroid, we can write,

B = p.onl

Qutside the toroid:

Considering the circular path c2 we get from Ampere’s circuital law

) B.di= HoNx0 — B=0, as the net current enclosed by the path/c2 is zero.

Limitation:

Ampere'slawnis always true, bubis only a useful tool to evaluate the magnetic field if the symmetry of
the system enables you to pull outside the line integral. The configurations that can be handled by
Ampere's law are: 1. Infinite straight lines, 2. Infinite planes, 3. Infinite solenoids, 4. Toroids.

Biot-Savart Law:

If the magnetic induction at'a point due to a line element dl of a conductor carrying a current | ampere

be given by dB, the law states that
i) |dB] o I, ii) [dB]| o< dl iii) [dB| o¢ sin & and iv) |dB]| o< -

o I dix?
4T 13

Vectorically, dB = where 1, is the permeability of free space.

The magnetic induction dB is perpendicular to the plane containing

the line element di and the position vector 7.

In absence or presence of a magnetic material the magnetic induction




at a point 7 due to a closed conductor is given by

= Wy g ldix?
B=-§-=220
471,'5;5 r3

Applications of Biot-savart Law:

1. Magnetic field due to the current flowing through a straight wire of finite length:

Let XY be a straight-line conductor carrying a current of I amp and P be
a point at a distance D from XY. The magnetic induction BatPis required.
From Biot-Savart law, the magnetic induction at P due to element dl, of the

wire is

. YA
Ho Idl sm(5+9) _ Mo I1dl cosf
41T 12 41T 12

dB=

Where | is the length of the radius vector.oefithe point P from dl,

Now dI= D sec?6 d6, also |= D se¢'0 v

dB=%cosQ 0

Therefore, the total magnetic induction\due to the entire wire is

B=2o %2 (59 dp =Lt (sin 01 + sin 02,) wh/m?,
4nD 7-01 4AmD

The direction of B is perpendicular to the plane of the paper and into it.
Special case:
For an infinite wire 91=62=§
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2. Magnetic field at a point.on the axis of a circular conductor carrying a current:

Let us consider a circular conductor carrying a current I. Now the magnetic
Field at a point P along the axis of the loop at a distance z is to be
determined.

Consider an element dlo on the loop. From Biot-Savart law the magnetic

field at a point P due to the element ﬂg is

= _ uold—lo'xf

dB = 4T I3

, Where y, is the permeability of free space.




Where 1 is the distance of the point P from element dl, on the loop. Since, the angle

Between d_l(; and [ is % we have

B = Mol al0
dB =-"~—-along PT
Because of symmetry, when entire loop is considered, the component perpendicular to the axis cancel

out and only components along the axis contribute.

Now, PV= PT sin< HPT = PT (a/l), a i the radius of the loop. Hence the component of dB along the
loop axis is
(dB)as = 222 <2

4-1tl_2

(@) = Ll g1,

4ml3
The magnetic field due to the entire loop is

wola? _  pola?
213 2(a2+z2)3/2

= _ MHola _ MHola _
(B)axis— 47(;_7 dlo = 42_13 (27‘[(1)—

If coil has N number of closely wound turns, then the magnetic field

MoNIa? 1
2(a%+z2)3/2 (1)

(E)axis =
Special case:

The field at the centre of the loop is obtain by putting z=0 in'equation(1). The field is

= 1
(B)centre= Z_Oa .

Problems:

1. Find the magnetic field at a point P for each of the steady current configurations shown in
figure below.

Fig.2

Fig.1




First Case:

The straight segments produced no field at P. We know that the magnetic field at the centre of circular

I

loop of radius a carrying a current | is (B)centre= 2—2 .

Here, P is the centre of two concentric quarter-circles of radius ‘a’ and ‘b’ respectively. Then the

magnetic field at P due to the quarter-circle of radius ‘a’ is

— _1 I
By =-x Z_Oa — outward normal to the page.

Similarly, the magnetic field at P due to the quarter-circle of radius ‘b’ is

I
X 2—°b — Inward normal to the page.

&

1
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Since, b>a then the magnetic field at P due to the entire current configuration is

(E)p = B_l) - B_Z) = %’I (% - % ) — outward normal to the page.

Second Case:

The magnetic field at P due to the twohalf-lines are the same as one infinite. line

B_l) = % — Inward normal to the page.

The magnetic field at P due to the'half-circle of radius R is

= _1 I
By =2 X 2—; — Inward normal to the page.

The total magnetie.field at P due to entire current,configuration is

(B)p=By +B, = i—(;: 1+ % ) — Inward normal to the page.

2. (a) Find'the magnetic field at the centre of.a square loop, which

carries a steadycurrent I. Let R be the distance from centre to side.

(b) Find the field at the centre of a regular n-sided polygon,

AT

carrying a steady current I. Again, let R be the distance from centre

ar

to any side.

(c) Check that your formula reduced to the field at the centre of a circular loop, in the limit

n—00,

Ans. (a) The magnetic field at P due to the finite straight I amount current
carrying wire be B= :T—O; (sinB1 + sin 82 ) — Inward normal to the page.
Here, D=R and 02=- 01 = 45°

The magnetic field at the centre of square loop due to the one arm is

v




— I, . . I
B, = :T—‘)R (sin 45 +sin45) = L—OR v/2 — outward normal to the page.

The magnetic field at the centre of square loop is

B = 4x BT = i—‘: v/2 — outward normal to the page.

(b) Here, D=R and 62= - 61 =~ for n-sided polygon

The total magnetic field at the centre of a n-sided polygon is

=4 I, . m LT nl
B=nxu—°(51nz+sm;)= Ho

. T
sin= — outward normal to the page.
4R 2TR n

(c) As n—oo, 0 will be very small. So, sinf = 6.

Then the magnetic field at the centre of a n-sided polygon as n—o is

B= ‘;"T’;I X % = ‘;LRI — magnetic field at the centre of a circular loop of radius R carrying a current I.
3. (a) Find the force on a square loop placed as shown in fig.1, near an infinite straight wire.

Both the loop and wire carry a steady current I.

(b) Find the force on a triangulardoop placed as shown in fig.2, near an infinite straight wire.
Both the loop and wire carry a steady current I.
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Fig.1 Fig.2

Ans.(a) The forces on two sides of square loop, normal to the infinite current carrying wire cancel.

The force on the bottom side of‘the square loop is

— 5> = 2 —
Fi=1(Ix%xB)= (”—"1) xla=tl2_, upward ( magnetic field due to the infinite straight wire B= ol ).
21s 2ms 21s

Similarly, the force on the top side of the square loop is

= _ Mol%a
2 2n(s+a)

: e . .= ol
— downward (magnetic field due to the infinite straight wire B= % .

Therefore, the net force on the square loop due to the infinite straight wire carrying a current I is

= F_uolza Wola _ pola®
S = B}

F= F1 ) 2ms  2m(s+a) B 2ns(s+a) - upward.



(b) The force on the bottom side of the triangular loop is A

a T
— 2 I 5
F;= u;lrsa — upward (magnetic field due to the infinite straight 603 L sy
\‘a_g
wire B= o0,
2ms
On the left side, the magnetic field B= % Z; }
The elementary magnetic force on the left side of the triangular loop is
dF =1 (i x B) =1 (dx £ +dy § + dz 2) x 2oL 2 =Bl 4y 5+ dy %)
yy 2y a1y y+ay —
, F
But the x-component cancels the corresponding term from the right side and Fy= - ”2"; [s % dy
V3
\/_ Hol? %+a/2 Hol? V3a
Here y=+/3 X, SOFy__Z\/?n In( S5 )——2\/§1T In(1 +?)

Similarly, the force on the right side of the triangle is the same as,left side, so the/net force on the
triangle is

5 2
F o= tol” [2 — \% In(1 + %)] — upward.

2w Ls

Exercise:

1. A hollow cylindrical conductor of infinite length carries uniformly distributed current | from a<

r < b. Determine the magnetic field for all.r.
1\

2. A long wire of cross-sectional radius R carries a current I. V

1

—

The current density varies as the square of the distance from the

axis of the wire. Find the magneticfield for r<R and for r>R.



