5'\8“ Velocity of Sound in Gasés

When a sound wave propagates in a gas, the pressure changes, i.e., the
compressions and rarefactions occur so rapidly that there is no exchange of
heat between the layers and the surroundings. The process is thus adicbatic
obeying the equation PV = constant, where v is the ratio of the specific
heat of the gas at constant pressure to that at constant volume. The
differentiation of the above equation gives

YPVT1aV + VP =

or, YPdV =-VdP

. — — —— f,28
or, P Vv (5.28)

1 dP |
K = ~57. = —V;i_‘; : (529)
L smce p : dP. §V = dV zmd Vo = V. Substituting for ff—’VJ from 'Eq._(5.28).,v.
i G il Eq (5 29’) gives K = ~P, so that the velocity‘ of sound in the gas is -

e e

S The bulk modulus is

or air 4t NTP, p = 1208 ke/w’s P = L1013 x 10°Pa and 7 = L4L
ubstituting these values in Bq. (5.30), we have c = 3323 w/s. in good -
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5.10 Veloc1t-y of Longitudinal Wavés in a Solid_ Bar

-~ We consider a solid bar of crosg sectional are
~ comparable to the wavelength of the Jop

the bar. T ar is ass . i
it tiig i‘l‘n;ﬁd:?)llllmd to be thin enough so that a longitudinal stress
it bhe deisits . 1 ] d(,e‘ment of the molecules over a given cross section.
| fea;‘,pt;ct:ivel ?13{72111( Y(?ung“ mf)ﬁlllllls of the ma.ter'ial of the bar be p and Y,
. pisd ; _CIOOE’C two planes A; and B, inside the bar perpendicular
to its axis, the initial distances of 4, and Bj from an arbitrary origin being
x and x + dz, respectively (Fig. 5.4). The passage of the longitudinal wave
causes the molecules in the rod to be displaced, thus shifting the planes A4,
| and Bj. Let at any instant of time, the plane A; be displaced by ¢ to the
position As. Correspondingly the plane B; is displaced by €+ ¢ to Ba. The
distance Ao B is 55_?? +d§ = dx+ 33@6:::. Thus the distance between the planes
‘increases by 0§ = %6:1:. Therefore, the elongation of the bar per unit length
“at this point is % Consequently, the compressive strain is —315

ea a, ‘phe length of the bar being
gitudinal wave propagating along

—> & le—— —> £+ |<—
o E < : F+28x
A 1 Ay B, \ B,
X v mt X +8x

Fxg 5.4 Prébagation of longitudinal waves in a.thin solid rod

" Since £ < 4z, the forces on A1 and Ay and those on By and Bs can be
= Ealir o be equal. If F is the foch on A; (or Ag) z.zctm.g 111_.'911e. pos;tg;s:z:—. ‘
dlrec tioﬁ,‘ the force on By (or Ba) act_ing in the oppcsyte dlrgctlon is F'+ 3—:”-6;:7 a5
Th&setwo fbr¢es .prOduc‘e two _effects: ' ' - -
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i the velocity of sound in thin metal rods is a few
o ‘-'_'--‘15 great:ex than that iy hqulds or ga.seb

S {Observatmns

Loafu

extemded sohd médlum, there would be, no later

ess F/o on the slab A1 B} develops the (‘mnpf{;g .
= !31&}'@_

(i) A (‘Olll])l(bsl\(‘ str
we have

strain --_7-\ From Hooke's law,
" stress Fla
" strain (__Qi)

Jx

~ %% A (534)

Il

or, F

(i) An unbalanced resultant force 458z causes, by Newton’s secon 1m§
of motion, an acceleration %;—_? of the slab of mass padz. Since Force = masi
x acceleration, we have | 5

OF o _ 506 AN
g 0T = PTG (9.35)
the negative sign implying that the force is in the negative - clnoctmn ‘
Equation (5.35) simplifies to

oF 9%

oz Yo

Differentiating Eq. (5.34) with respect to x and substituting in Eq. (5.36)
we obtain ' E

(5:30)

d% 9%
Y — =
922 ~ Pop
‘ 02£ y 32{- s SR
o1 ? 0t2 e ; OJ,:') . (5.37) 7

Comparison of Eq. (5.37) with Eq. (5.8) shows that € satisfies the differential
wave equatlon for plane waves. The wave velocity for € is therefore given by - :

— —_ : 7 . 5
P = (5:38)

Note that the analysis given above js parallel to the one given in Sec. 57

- In fact, Eq. (5.38) is obtained from E %
- with: Young’s modulus Y. s (5 24) by mpld“m’ bulk modulus f 3

-~ Since, for metals, ¥ 7
is of the order of 10!1pa aud p is about lﬂlkg/m

tllll&b 1[)d m/:, Tlllb volomt}

2 mstead of A yig S S §y
m a long thm bar longltudmal wave% pmpdgute "m E‘I,lr_},‘f';;,;

al hxpansmu or (.011171&('(:1011,._'-;_ B
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associated with the longitudinal contraction or expansion during the passage
of the wave, as we had for a long thin bar. Therefore, the axial modulus X
should replace Young’s modulus Y in Eqs. (5.37) and (5.38), so that in an
extended solid the velocity of sound is given by

X
c= /=, (5.39)
P
The axial modulus X can be written as
¥ — 3K + 4n _ Y(1-o0) (5.40)
3 (1+0)(1-20)

where /' is the bulk modulus, n is the rigidity modulus, and ¢ is Poisson’s
ratio. So. Eq. (5.39) gives

3K +4n Y(1-o0)
3p  \p(l+o)(1=-20)

Waves travelling through the earth’s crust during an earthquake are
approximate examples oi waves travelling in an extended solid.

(5.41)
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