the isotope “°U has a concentration less than its natural
value. Although depleted uranium 1s referred to as a by-
product of the enrichment process, it does have uses 1n the
nuclear field and 1n commercial and defense industries.

2.4. Mass Defect and Binding Energy

The separate laws of conservation of mass and
conservation of energy are not applied strictly to the nuclear
level. It 1s possible to convert between mass and energy.
Instead of two separate conservation laws, a single
conservation law states that the sum of mass and energy 1s
conserved. Mass does not magically appear and disappear at
random. A decrease in mass will be accompanied by a
corresponding increase 1n energy and vice versa.

Before going on the discussion of mass defect and
binding energy, it 1s convenient to introduce a conversion
factor derived by the mass-energy relationship from
Einstein's Theory of Relativity.

Einstein's famous equation relating mass and energy 1s
E = mc (Eq.l.1) where ¢ is the velocity of light
(c =2.998 x 10" m/sec). The energy equivalent of 1 u can be
determined by inserting this quantity of mass into Einstein's
equation and applying conversion factors.

E = mc’
= 1u{1.6606x10*'kg/1u} {2.998x10°m/sec}’
(1IN/1kg.m/sec”)(1J/1N.m)
= 1.4924x10"° J{1 MeV/1.6022x10™" J}
=931.5 MeV
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2.4.1. Mass defect

Careful measurements have shown that the mass of a
particular atom or 1sotope 1s always slightly less than the
number of nucleons (sum of the individual neutrons and
protons) of which the atom consists. The difference between
the atomic mass of the atom and the total number of
nucleons (A) in the nucleus is called the mass defect or mass
excess (Am). The mass defect can be expressed in terms of
atomic mass units and/or in terms of energy as:

Am= M(Z,N)—A u 2.2a
Am = {M(Z,N) — A}931.5 MeV 2.2b

where: Am = mass defect (u or MeV)
M (Z, N) = mass of nuclide %X (u)
A = mass number

In calculating the mass defect, it 1s important to use the full
accuracy of mass measurements because the difference in
mass 1s small compared to the mass of the atom. Rounding
off the masses of atoms and particles to three or four
significant digits prior to the calculation will result in a
calculated mass defect of zero.

Example:

Calculate the mass defect for lithium-7. The mass of "Li
1s 7.016003 u.

Solution:
Apply Eq. 2.2a Applying Eq. 2.2b
Am = 7.016003 -7 Am = (7.016003 -7)931.5
=0.016003 u = 149067945 MeV
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2.4.2. Binding energy

Binding energy 1s defined as the amount of energy that
must be supplied to a nucleus to completely separate its
nuclear particles (nucleons). It can also be understood as the
amount of energy that would be released if the nucleus was
formed from the separate particles.

Since 1 u 1s equivalent to 931.5 MeV of energy, the
binding energy can be calculated by the mass difference
between the nucleus and the sum of those of the free
nucleons, including the mass of electrons associated with
protons.

BE(Z,A) ={Zm, + Zm, + (A—Z)m, — M(Z,N)}c*2.3a
or

BE(Z,A) ={Zmy + Nm,, — M(Z,N)}931.5 MeV 2.3b

m, = mass of proton (1.0072764 u)
m, = mass of neutron (1.008665 u)

m, = mass of electron (0.000548597 u)
my = m, +m, = mass of hydrogen atom = (1.007825 u)

Appendix II tabulates, in addition to some other usefull
informations, the atomic weight of all elements and the mass
defect in MeV of all important isotopes. These values can be
used to find the atomic mass of each isotope.

Example:
Calculate the mass defect and binding energy for

uranium-235. One uranium-235 atom has a mass of
235.043924 u.

Solution:
Step 1: Calculate the mass defect using Equation (2.2)
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Am= {M(Z,N)-A}931.5 MeV
— (235.043924 — 235)931.5 = 40.9152 MeV

Step 2: Use the mass defect and Equation (2.3) to calculate
the binding energy.
BE = {Zmy + Nm,, — M(Z,N)}931.5 MeV
= {[92(1.007826 u) + (235-92)1.008665 u]
- 235.0439241931.5

BE = 191517 u x931.5 MeV/u = 1784 MeV

2.4.3. Separation energy

The useful and interesting property of the binding energy
1s the neutron and proton separation energies. The neutron
separation energy S, is the amount of energy required to

remove a neutron from a nucleus, ; X (sometimes called the
binding energy of the last neutron). This i1s equal to the
difference in binding energies between ;X and ", X .

S.=BE(;X )-BE(*,X) 2.4
Se={M(";X)-M(;X)+m,)c 25

Similarly one can define proton separation energy S, as

the energy needed to remove a proton from a nucleus ,X
(also called the binding energy of the last proton) which

convert to another nuclide,’, Y and can be calculated as
follows.

S,=BE(;X)-BE(7.,Y) 2.6

Sy={M(53Y)-M(;X)+m('H)}c’ 2.7



The Hydrogen mass appears in this equation instead of
proton mass, since the atomic mass 1s m ( 'H ) = my, + m,.
The neutron and proton separation energies are analogous to
the 1onization energies in atomic physics, in terms of the
binding of the outermost valance nucleons. Just like the
atomic 1onization energies, the separation energies show
evidence for nuclear shell structure that 1s similar to atomic
shell structure.

2.4.4. Binding energy per nucleon

As with many other nuclear properties that will be
discussed 1n the coming sections, we gain valuable clues to
nuclear structure from a systematic study of nuclear binding
energy. As the number of particles 1n a nucleus increases,
the total binding energy also increases. The rate of increase,
however, 1s not uniform. This lack of uniformity results in a
variation in the amount of binding energy associated with
each nucleon within the nucleus. In other wards since the
binding energy increases more or less linearly with atomic
mass number A, 1t 1s convenient to show the variation of the
average binding energy per nucleon, BE/A as function of A.
Fig. 2.4 shows the average BE/A as plotted versus atomic
mass number A.

Fig. 2.4 1illustrates that as the atomic mass number
increases, the binding energy per nucleon increases almost
linearly for light elements (except for 3He, $Be, 1%C, 150 ),
then rapidly for A < 60 reaches a maximum value of
8.79 MeV at A = 56 (close to 1ron) and decreases to about
7.6 MeV for A = 238. The average BE/A of most nuclei 1s,
to within 10%, about 8 MeV.

The general shape of the BE/A curve can be explained
using the general properties of nuclear forces. Very short-
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range attractive nuclear forces that exist between nucleons
hold the nucleus together. On the other hand, long-range
repulsive electrostatic (coulomb) forces that exist between
all the protons in the nucleus are forcing the nucleus apart.
So the nuclear forces are very short range of the order of the
diameter of one nucleon, or they saturate to pairs of
nucleons (two protons and two neutrons) to form a-cluster.
This is clear in light stable nuclei for A < 20 where the sharp
rise appear to be off the curve. Those specific light stable
nuclei are 5He, 3Be,'2C, 50 . This is due to the fact of
higher BE/A of 3He particle (or a-cluster) bouggydmehe
nucleus and the other (A = 4n nuclei for n=1, 2 ...) stable
nucler for A < 20 compared to their neighbors. In other
words, the 4n nucle1 for n=1, 2, .. trend to make a-particles.

0 50 100 150 200
A
Figure 2.4. Binding Energy per Nucleon vs. Mass Number.
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As the atomic number and the atomic mass number
Increase, the repulsive electrostatic forces within the nucleus
increase due to the greater number of protons in the heavy
elements. To overcome this i1ncreased repulsion, the
proportion of neutrons in the nucleus must increase to
maintain stability. This increase in the neutron-to-proton
ratio only partially compensates for the growing proton-
proton repulsive force in the heavier, naturally occurring
elements. Because the repulsive forces are increasing, less
energy must be supplied, on the average to remove a
nucleon from the nucleus. The BE/A has decreased.

The BE/A of a nucleus 1s an indication of its degree of
stability. Generally, the more stable nuclides have higher
BE/A than the less stable ones. The increase in the BE/A as
the atomic mass number decreases from 260 to 60 1s the
primary reason for the energy liberation in the fission
process. In addition, the increase in the BE/A as the atomic
mass number increases from 1 to 60 i1s the reason for the
energy liberation 1n the fusion process, which 1s the opposite
reaction of fission.

The heaviest nucle1r require only a small distortion from a
spherical shape (small energy addition) for the relatively
large coulomb forces forcing the two halves of the nucleus
apart to overcome the attractive nuclear forces holding the
two halves together. Consequently, the heaviest nucle1 are
easily fissionable compared to lighter nuclei.

2.5. Mass Spectroscopy

Binding energies may be calculated if masses are
measured accurately. One way of doing this is by using the
techniques of mass spectroscopy. The principle of the
method 1s shown 1n Fig. 2.5.
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