511 ~ Properties of the Differential Wave Equation "

\\?e have seen that the particle displacement £ obeys the differential equation
~ for plane waves, i.e., | | .
| e (2(’)25
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£ s a function of the independent variables = and t. We shall show
here that the particle velocity, dilatation, condensation, acoustic pressure
ete. satisfy the same differential wave equation as € and propagate with the
same phase velocity c.

(5.42)

{1) The particle velocity u is given by
a
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Differentiating both sides of Eq. (5.42) with respect to £. we obtain
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Since x and t are independent variables, the order of differentiation with
respect to x and t can be interchanged in Eq. (5.44) to yield
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So. A (and hencc‘v) obeys the wave equation.

. (iii) The acoustic pressure p is related to the condensation s by p=Ks
where K is the bulk modulus. Since s satisfies the wave equation. it follows
that p also satisfies the same, and so does the pressure gradient dp/0z.
Fnrthermore since the excess density is dp = pys. obviously tlie excess
density obeys the wave equation.

5.12 Simple Hafmoni'c Solution of
the Wave Equation

- 'We have seen that the differential equation for the wave field parameter v
associated with a plane wave propagating with the phase velocity ¢ i3

ij;l'/" .-: ('{‘!g’zw (5.47)
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The results of Sec. 5. 11 show that apart from tlw particle displacement s
the Ihuhvh» velocity, dilatation, acoustic pressure ete. can serve as the \ml\*
‘ ?f”‘ld par “m(’t(‘t. For sniall rhsplucmneutb when Hooke's law is valid. 1.¢- ‘1
H ““5'30”“8 f‘"“«(‘ is Dml’mtlohnl to the d:splaoomom the pacticle displace : !‘
£ varies simple lmrmomcal]y Anyof the forms given by Egs. (5.10a) U ‘m
- (5.16d) for € is acceptable. By dircot substitution, it is readily verified
| t;has( fmmf; smwfy tlw thff(\rontml wavc oqnatmn
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similar harmonic solutions can be written for any of the other wave field

- parameters, For example, we write forr the particle velocity

= % = —-wA'h'i_n(w_t - k) | £, g

= | 1 (59

= wAcos | wt — kx+ 5 o (5.49)

The dilatation is .

0 7r 5.50)

A= 5—% = kAsin(wt — kx) = kA cos (wt. — ki — E) : (5.50)

‘The condensation is |
s=-0=-kA sin(wt = ka) = kA cos (wt = kx + g) . (5.51)

The acoustic pressure is |
| p=Ks=~KkAsin(wt - k) = -c'“’pulfA sin(wt — kx)
= cgpokA Cos (u)t - ka + -721) . (5.52)
The excess density is ! :

d = pos = —pok Asin(wt — ka) = pok A cos (wt - kx + %) - (5.53)

The above relationships show that u, s, p and d are in phase and all of them
lead the particle displacement € by 7/2 in time. Only the dilatation A lags
£ by /2 in time,

Observation |
The maximum acoustic pressure is cpokA, where 4 is the mnximum
particle displacement, The plots of € and p against ¢ for a particulnr valne
of = are shown in Fig. 5.5, The curves show the harmonic varintions glvon
by Eqgs. (5.48) and (5.52). Because of the phase difference of w/2 betweon
€ and p, the excess pressure is zero at maximum or minimun displacement;
the excess pressure is a maximum or a minimum when the displacement is

Zero.
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Fig. 5.5 Plots of £ (solid line) and p (broken lines)
against ¢ for a monucl_lr.omatic sound wave.- .
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The root-mean square sound pressure pp,s is given by
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