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Find the Fourier transform of
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We note two features of this result:
(1) It 1s real;if f(¢) is even, its transform will be real.

(2) The more localized 1s f(¢), the less localized will be g(w).



Find the Fourier transform of
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This 1s the ultimately localized f(¢), and we see that g(w) 1s completely delocalized;
it has the same value for all w.



Fourier transform of Gaussian
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integration variable fromrtos =t —iw/2a
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The s integration,1s on a path parallel to,but below the real axis by
an amount iw/2a. But because connections from that path to the

real axis at -

=T make negligible contributions to a contour integral



and since the contours enclose no singularities, the integral

is equivalent to one along the real axis. Changing the itegration limits

to £00 and rescaling to the new variable & = s/./a, we reach

0 1 o0
f e~ dt = — e_ézdé
a
— 00 — 00




Fourier transform and their inverses
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Fourier Transform (three-dimensional space)
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amplitude of the wave exp(—ik - r)
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expansion of a function f(r) in a continuum of plane waves



Properties of Fourier Transform (Translation 3D & 1D)

[---1' to denote the Fourier transform of the included object
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Properties of Fourier Transform (Change of scale 3D & 1D)
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Properties of Fourier Transform (Sign change 3D & 1D)
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Properties of Fourier Transform (Complex Conjugation 3D & 1D)
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Properties of Fourier Transform (Gradient 3D & 1D)
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[ f (r)] T(a)) = —iwg(w) (first derivative)



Properties of Fourier Transform (Laplacian 3D & 1D)

Applying Green’s theorem 1
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I, |x| <1

1. The function f(x)=
0, [x]>1

1s a symmetrical finite step function.

(a) Find g.(w), Fourier cosine transform of f(x).

(b) Taking the inverse cosine transform, show that
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x| < 1.



2.

(a) Show that the Fourier sine and cosine transforms of e %! are
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(b) Show that

m .
W SIN WX T

f 5 sdo = —e “@o x>0,
w* +a

0

0
COS WX T

[ ——do=_—e¢ “Yoox>0
w* + a 2a

0



3. Find the Fourier transform of the triangular pulse

h(l —alx]), |x|<1/a,
f(x) =

0, x| >1/a.



