CHAPTER 4

RADIOACTIVE DECAY DYNAMIC

The rate at which a sample of radioactive materic
decays is not constant. As individual atoms of the materic
decay, there are fewer of those types of atoms remaining
Since the rate of decay is directly proportional to th
number of atoms, the rate of decay will decrease as th
number of atoms decreases.

4.1. Radioactive Decay Rates

Radioactivity 1s the property of certain nuclides c
spontaneously emitting particles or electromagnetic wave:
or 1s the process in which an unstable atomic nucleus lose
energy by emitting radiation in the form of particles c
gamma radiation. This decay, or loss of energy, results in a
atom of one type, called the parent nuclide transforming t
an atom of a different type, called the daughter nuclide. Thi
1s a random process on the atomic level, in that it 1
impossible to predict when a particular atom will decay
However, the average behavior of a very large sample ca
be predicted accurately by using statistical methods. Thes
studies have revealed that there 1s a certain probability tha
in a given time interval, a certain fraction of the nucle
within a sample of a particular nuclide will decay. Thi
probability per unit time that an atom of a nuclide will deca
1s known as the radioactive decay constant, L. The units fc
the decay constant are inverse time.
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4.2. Units of Radioactivity

The activity (A) of a sample of any radioactive nuclide 1s
the rate of decay of the nucle1 of that sample. For a sample
containing billions of atoms, this rate of decay 1s usually
measured 1n the number of disintegrations that occur per
second. If N 1s the number of nucle1 present in the sample at
a certain time, the change in number of those nucle1r with
time, rate of decay, 1s the activity A, and can be given by:

dN
A=——— 4.1
dt

The minus sign i1s used to make A a positive quantity
since dN/dt 1s, of course, intrinsically negative.

In addition, the activity 1s the product of the decay
constant and the number of atoms present in the sample. The
relationship between the activity A, number of atoms N, and
decay constant 4 1s given by:

A=AN 4.2

Since 4 1s a constant, the activity and the number of atoms
are always proportional.

Two common units to measure the activity of a substance
are the Curie (Ci1) and Becquerel (Bq). A curie 1s a unit of
measure of the rate of radioactive decay equal to 3.7 x 10"
disintegrations per second. This 1s approximately equivalent
to the number of disintegrations that one gram of radium
**°Ra will undergo in one second. A Becquerel, as the metric
system, 1s a more fundamental unit of measure of
radioactivity than Curie. The conversion between Curie and
Becquerel 1s shown below.
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1Bg =1 dis/sec
] Curie =3.7 x 10" Bq

Note that the activity tells us only the number of
disintegrations per second; it says nothing about the kind if
radiations emitted their energies, or the effect of radiation on
a biological system, since different radiations may give
different effects. In the next section, some alternative units
for measuring radiation that take into account their relative
biological effects will be discussed.

4.3. Radioactive Decay Law

From the previous two basic relationships, Eq.4.1 and
Eq. 4.2, it 1s possible to use calculus to derive an expression
that can be used to calculate how the number of atoms
present will change over time.

-dN = NA dt
or
dN
= Ad
- t 4.3

This equation describes the situation for any short time
interval, dt. To find out what happens for all periods of time,
we simply add up what happens in each short time interval.
In other words, we integrate the above equation. Expressing
this more formally, we can say that for the period of time
from ¢t = 0 to any later time t, the number of radioactive
nucleil will decrease from N, to N,, so that:

N, = Ny exp (-A1) 4.4
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This final expression 1s known as the Radioactive Decay
Law. It tells us that the number of radioactive nucle1r N, at
time ¢t = 0 will decrease 1n an exponential fashion to N, with
time with the rate of decrease being controlled by the decay
probability per unit time, decay constant A.

The decay constant 1s characteristic of 1ndividual
radionuclide, 1.e., has a different values for each. Some, like
uranium-238, have a small value and the material, therefore,
decays quite slowly over a long period of time. Other nucle1
such as technetium-99m (*’Tc’) are metastable, have a
relatively large decay constant and decay far more quickly.
The radioactive decay law 1s shown 1n graphical form in
Fig. 4.1 for three typical radionuclides of different decay
constants.

The graph plots the number of radioactive nucle1 at any
time, N, against time, 7. The influence of the decay constant
can be seen clearly.

Since the activity A and the number of atoms N are
always proportional, they may be used interchangeably to
describe any given radionuclide population. Therefore, the
following 1s true:

A, =Ap exp (-At) 4.5
where:

A, = activity present at time ¢
Ay = activity initially present
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Figure 4.1. The influence of the decay constant.

4.4. Radioactive Half-Life

One of the most useful terms for estimating how quickly
a nuchide will decay 1s the radioactive halt-life. The
radioactive half-life 1s defined as the amount of time
required for the activity to decrease to one-halt of its
original value. A relationship between the half-life and
decay constant can be developed from Eq.4.5. The half-life
can be calculated by solving Eq.4.5 for the time, t, when the
current activity, A, equals one-halt the 1nitial activity
A = 12A,. First, solve Eq.4.5 for t:

Ln(A, /A,)
P

- —

4.6
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Now if A 1s equal to one-half of A, A/A, 1s equal to one-
half. Substituting this ratio in the above equation yields an
expression for ti,:

Ln(1/2) In(2) 0.693
Ly = 2 e P = P

4.7

The basic features of decay of a radionuclide sample are
shown by the normalized graph in Fig. 4.2.

Note that the half-life does not express how long a
material will remain radioactive but simply the length of
time for 1ts radioactivity to reduce by half. Assuming an
initial number of atoms N,, the population, and
consequently, the activity may be noted to decrease by one-
half of this value 1n a time of one half-life. Additional
decreases occur so that whenever one half-life elapses; the
number of atoms drops to one-half of what its value was at
the beginning of that time interval. After five half-lives have
elapsed, only 1/32, or 3.1%, of the original number of atoms
remains. After seven half-lives, only 1/128, or 0.78%, of the
atoms remains. The number of atoms existing after 5 half-
lives can usually be assumed to be negligible.

Another useful term 1s the mean lifetime of the nuclei,
which 1s given by the total time of existence of all nucle1
divided by the number of nucle1 present initially. Since the
decay process 1s a statistical one, any single atom may have
a life from zero to «. Hence, the mean lifetime 7 1s given:

| s Al - |y . 1
g —F{}L N Ate™"dt =41 " te " dt = Z 4 8
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Figure 4.2. Radioactive decay as a function of time in
units of half-life.

It 1s also possible to consider the radioactive decay law
from another perspective by plotting the logarithm of N
against time. In other words from our analysis above by
plotting the expression:

Ln(N/N,) =- At inthe form Ln(N) = -At + Ln(N,) 4.9

Notice that this expression 1s simply an equation of the
form y = mx + ¢ where m = -4 and ¢ = In(N,). As a result,
it 1s the equation of a straight line of slope -4 as shown i1n
Fig. 4.3. Such a plot 1s sometimes useful when we wish to
consider a situation without the complication of the direct
exponential behavior.
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