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Laplace Transform of Derivatives

Let us transform the first derivative of F'(¢):
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Integrating by parts, we obtain
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E{F’(t)} — e STF(1) —I—Sfe_”F(r)dt
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=sL{F (1)} — F(0)



LAF (1)} =sL{F (1)} — F(0)

Strictly speaking, F(0) = F(+0)

An extension to higher derivatives gives
c {F(2> (z)} — 2LAF (1)) — sF(+0) — F'(+0)

LIFD())y=s"L{F(t)} —s" 'F(+0) —--- — F"D(40)

The Laplace transform, like the Fourier transform,

replaces differentiation with multiplication.



Change of Scale

If we replace f by ar in the defining formula for the Laplace transform,
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Substitution

If we replace the parameter s by s — a 1n the definition
of the Laplace transform,we have
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f(s—a) :[e_(s_a)fF(r)dr
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(s —a):ﬁ{earF(t)}

Hence the replacement of s with s — a corresponds to

multiplying F(¢) by e, and conversely.
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Simple Harmonic Oscillator -
initial conditions

d* X (t _
2() kX (1) =0 T X)) =Xo.
dt X'(0) =0.
Applying the Laplace transform, we obtain
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Letting x (s) denote the presently unknown transform £ { X (7)}

mszx(s) —msXog+kx(s) =0



mszx(s) —msXo+kx(s)=0
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Damped Oscillator
initial conditions

mX"(t)+bX'(t) + kX () =0 1 X (0) = Xo,
X'(0) =0.

Applying the Laplace transform, we obtain

m[s2x(s) —sXol+D[sx(s) — Xo]l+ kx(s) =0
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Considering that the damping is small enough that b* < 4 km, then

the last term 1s positive and will be denoted by a)%

s+b/m
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x(s) = Xp



s+b/m
(s + b/2m)? + w*

x(s) =X

s+b/2m y w1 (b/2mwq)

x(s) = X - A()
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INVERSE LAPLACE TRANSFORM
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RLC Circuit

A
It 1s worth noting the similarity between the
damped simple harmonic oscillation of a mass L
and an RLC circuit.

Sy

The sum of the potential differences around the loop .

must be zero (Kirchhoff’s law, conservation of energy). This gives

charge of capacitor

dl
L—+R1+— %
dt



L——I—Rl—l——jldt_

Differentiating with respect to time (to eliminate the integral), we have
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If we replace 1(t) with X (¢), L with m, R with b, and C—! with &,
then it 1s identical with the mechanical problem.



Heaviside Shifting Theorem

This time let f(s) be multiplied by =%, with b > 0:

Now let ¢

e Fls)=e " f e STF(t)dt
0
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00
e f(s) = f e *"F(t —b)dr
b
Since F'(r) 1s assumed to be equal to zero for r < 0, so that F'(t —b) =0
for 0 < t < b, we can change the lower limit to zero without changing the
value of the integral. Then renaming t as our standard Laplace transform

variable ¢, we have o0
e_bsf(s) = [ e ""F(t —b)drt

0

e f(s)=L{F(t — b))




Step Function

oo .
F(r):f Slntxdx
X
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Laplace transform of this definite (and improper) integral
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Now, interchanging the order of integration, we get

Laplace transform of sinzx

f(s):fl [ Ssintx dt | dx
X

0
o0
_[ dx
- 52+x2
0




.0

dx
£s) = [ —

0
| S N
— — tan (—)
S A) 0
Fs) = —
> X

We carry out the inverse transformation to obtain

F(r):%, t >0



For F'(—t) we need note only that sin(—7x) = — sinfx, giving
F(—t)=—F(t). Fmally,1f r =0, F(0) 1s clearly zero. Therefore,
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Here u(r) 1s the Heaviside unit step function:
o0
Thus, f (sintx/x)dx, taken as a function of 7, describes a step function
0

with a step of height 7 at r = 0.



o0 sinfx step function
F(t) — fo T dx, d p



Periodic Function

F(t) 1s periodic with a period a so that F(t +a) = F(¢) forall t > 0

F(1)
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LIF() = /0 TSRt dt



(n+1)a
L{F(t) }_2/ e TSUF(t) di
= Ze_ms/ e 5" F(t) dt
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Performing the summation,

L{F(t)} = ! /0 e TF(t) dt

1 _ e—a,s

Note that the integration 1s now over only the first period of F'(7).



Derivative of a Transform

f(s)=LA{F (1)) :/e_”F(r)dr
0

differentiated with respect to s

f% = f (—)e " F(t)dt = L{—tF (1)}
0

Continuing this process, we obtain

f )= L{(="F 1)}



r |
[e_” k’dt— . s>k
0

Differentiating with respect to s (or with respect to k), we obtain

ﬁ{tekr} — G —1/{)2’ s >k

If we replace k by ik and separate into 1ts real and imaginary parts,
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Integration of Transforms
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f(x):[e_“F(r)dr
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Now reversing the order of integration 1n the following equation:
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Laplace Convolution Theorem

We take two transforms,
f1(s) =L{F (1)} and f2(s) =L{F2()}.

and multiply them together:

0.¢ 0.

fl(S)fz(S)=]e_sxFl(X)dee_Ssz(y)dy
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If we introduce the new variable t = x + y and integrate over ¢

and y mstead of x and y, the limits of integration become (0 <1 < 00),

O=y=1. o ,
fl(S)fz(S)=f€_”dr[F1(f—y)Fz(y)dy
0 0

{

=L [Fl(f—y)Fz(y)dy
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= L{F| x 5}



J1(8) f2(s) = L{F| x F>)}

r convolution of F; and F>

f Fi(t —2)F2(z)dz = I /Fz
0

Fi % I, = F» % ' mm) convolution 1s symmetric

Carrying out the inverse transform, we also find
t

ﬁ_l{fl(S)fz(S)}=fF1(f—Z)Fz(z)dz
0
= F1 x >



1.

The motion of a body falling 1n a resisting medium may be described by

d*X(t) , 4X
az ¢ dt

m

when the retarding force 1s proportional to the velocity.

Find X (z) and d X (¢) /dt for the 1nitial conditions

dX
X0)=— =0.
dt r=0



2.

Find the Laplace transform of the square wave (period a) defined by

I, O<t<al/2,
F(t) =
0, a/2<t<a.



Show that
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From the convolution theorem show that

r
%f(s)_ﬁ{[F(x)dxl,

0

where f(s) =L{F(1)}.



